January 20, 2019 January 20, 2019 07:00 AM PST 07:00 AM PST Get personalized insights on how to achieve your Target Quant Score. January 19, 2019 January 19, 2019 07:00 AM PST 09:00 AM PST Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT.
Author 
Message 
TAGS:

Hide Tags

Manager
Joined: 25 Aug 2011
Posts: 139
Location: India
WE: Operations (Insurance)

If there are more than two numbers in a certain list, is each of the
[#permalink]
Show Tags
Updated on: 27 Aug 2018, 04:49
Question Stats:
58% (00:30) correct 42% (00:29) wrong based on 991 sessions
HideShow timer Statistics
If there are more than two numbers in a certain list, is each of the numbers in the list equal to 0? (1) The product of any two numbers in the list is equal to 0. (2) The sum of any two numbers in the list is equal to 0. Am unable to understand how the answer is B from II u can have a positive and a negative number totaling to 0 eg. 1+(1). However if we combine both statements the value of all elements is 0.. Pl Help
Official Answer and Stats are available only to registered users. Register/ Login.
Originally posted by devinawilliam83 on 25 Feb 2012, 01:23.
Last edited by Bunuel on 27 Aug 2018, 04:49, edited 2 times in total.
Edited the question




Math Expert
Joined: 02 Sep 2009
Posts: 52294

Re: If there are more than two numbers in a certain list, is each of the
[#permalink]
Show Tags
25 Feb 2012, 01:30
devinawilliam83 wrote: if there are more than 2 numbers in a list. is each of the number in the list equal to 0? I. The product of any 2 numbers in the list is equal to 0 II. The sum of any 2 numbers in the list is 0
Am unable to understand how the answer is B from II u can have a positive and a negative number totaling to 0 eg. 1+(1). However if we combine both statements the value of all elements is 0.. Pl Help If there are more than two numbers in a certain list, is each of the numbers in the list equal to 0? Note that we are told that there are more than 2 numbers in the list. (1) The product of any two numbers in the list is equal to 0 > it's certainly possible all numbers to equal to 0 but it's also possible one number to be different from 0 and all other numbers to equal to 0 (in this case the product of ANY two numbers in the list will also be equal to 0). Not sufficient. (2) The sum of any two numbers in the list is equal to 0 > as there are more than 2 numbers in the list then all numbers must equal to 0 (if we were not told that there are more than 2 numbers in the list then it would be possible to have a list like {1, 1} but as there are more than 2 numbers then in order the sum of ANY two numbers in the list to be equal to 0 all numbers must equal to zero). Sufficient. Answer: B. P.S. Please DO NOT reword or shorten the questions you post.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics




Manager
Joined: 23 Feb 2012
Posts: 200
Location: India
Concentration: Finance, Entrepreneurship
GPA: 2.9
WE: Marketing (Computer Software)

Re: If there are more than two numbers in a certain list, is each of the
[#permalink]
Show Tags
13 Mar 2012, 01:17
devinawilliam83 wrote: If there are more than two numbers in a certain list, is each of the numbers in the list equal to 0? (1) The product of any two numbers in the list is equal to 0. (2) The sum of any two numbers in the list is equal to 0.
When I saw the phrase, "more than two numbers in a list", I immediately thought I am going to pick 3number set. Not more. Reading on, "does each number equal to 0"? So the 3number set I picked was {0,0,1}. Option 1 says, "the product of any two numbers equal to 0". In my list, it does. But right away I figured that, because the other two numbers are 0, the product of any two numbers will always be 0. INSUFFICIENT. Option 2 says, "the sum of any two numbers equal to 0". Aha! With this condition, the 0's in the set will not force the result to be 0. So, only B. SUFFICIENT.
_________________
If you like it, Kudo it!
"There is no alternative to hard work. If you don't do it now, you'll probably have to do it later. If you didn't need it now, you probably did it earlier. But there is no escaping it."
710 Debrief. Crash and Burn




Retired Moderator
Joined: 05 Jul 2006
Posts: 1722

Re: If there are more than two numbers in a certain list, is each of the
[#permalink]
Show Tags
12 Jan 2013, 02:39
kiyo0610 wrote: If there are more than two numbers in a certain list, is each of the numbers in the list equal to 0?
(1)The product of any two numbers in the list is equal to 0 (2)The sum of any two numbers in the list is equal to 0 FROM ONE we cant tell whether all set members are 0 or not because if the set contains odd number of elements then for 1 to be true then all elements must be zero but if the number of elements is even , we can ve one element as an intiger for example that is larger or less than 0 and the statment still will hold true ... insuff from 2 this could only hold true if all elemnts are 0's B



Current Student
Joined: 11 Jun 2013
Posts: 8
Location: India
GPA: 3.8

Re: If there are more than two numbers in a certain list, is each of the
[#permalink]
Show Tags
13 Jul 2013, 09:11
devinawilliam83 wrote: If there are more than two numbers in a certain list, is each of the numbers in the list equal to 0?
(1) The product of any two numbers in the list is equal to 0. (2) The sum of any two numbers in the list is equal to 0.
Am unable to understand how the answer is B from II u can have a positive and a negative number totaling to 0 eg. 1+(1). However if we combine both statements the value of all elements is 0.. Pl Help B is the answer. If it is the condition that any of the two numbers have sum zero, then they all have to be zero only.



Manager
Joined: 21 Oct 2013
Posts: 185
Location: Germany
GPA: 3.51

Re: If there are more than two numbers in a certain list, is each of the
[#permalink]
Show Tags
21 Jul 2014, 03:24
devinawilliam83 wrote: If there are more than two numbers in a certain list, is each of the numbers in the list equal to 0?
(1) The product of any two numbers in the list is equal to 0. (2) The sum of any two numbers in the list is equal to 0.
Am unable to understand how the answer is B from II u can have a positive and a negative number totaling to 0 eg. 1+(1). However if we combine both statements the value of all elements is 0.. Pl Help It is important to understand what the statements say here. They each say ANY 2 numbers, which means that no matter how many numbers you have and which of these numbers you take, you always get the result as stated in the statements. Let's take a look: (1) The product of any 2 numbers = 0. If you have 100 numbers and 99 are 0 and 1 is not you will ahve any 2 numbers = 0. If you have 100 = 0 you get the same result. IS. (2) The sum of any 2 numbers = 0. This can only mean that every number = 0. You are right that 1+ (1) = 0 bit if you have a third number, e.g. 0 or 3 or 9. you will get a result different from 0. Hence the answer can only be that all the numbers are 0s. Hence B.



Intern
Joined: 18 May 2016
Posts: 1

Re: If there are more than two numbers in a certain list, is each of the
[#permalink]
Show Tags
19 Nov 2016, 17:24
What if there are four numbers. 1,3 ,+1,+3. SUM is zero but each number is not.



Math Expert
Joined: 02 Sep 2009
Posts: 52294

Re: If there are more than two numbers in a certain list, is each of the
[#permalink]
Show Tags
20 Nov 2016, 02:16



Intern
Joined: 27 Mar 2017
Posts: 1

Re: If there are more than two numbers in a certain list, is each of the
[#permalink]
Show Tags
29 Mar 2017, 06:50
Hey everyone, I have a more general question regarding this type of question. So the question basically says "Is each of the numbers in the list equal to 0?" Maybe I complicate myself, but I thought that statement I is sufficient, as it provides a clear answer to the question. > No, the numbers in the list are not equal to zero. So my question is, if this kind of question pops up in the GMAT, does the sufficiency of the statements only depend on a positive affirmation of the question? I hope I could express what I mean (since I'm not native in English )?! Thanks, Vincent



Math Expert
Joined: 02 Sep 2009
Posts: 52294

Re: If there are more than two numbers in a certain list, is each of the
[#permalink]
Show Tags
29 Mar 2017, 07:00
Vincent89 wrote: Hey everyone, I have a more general question regarding this type of question. So the question basically says "Is each of the numbers in the list equal to 0?" Maybe I complicate myself, but I thought that statement I is sufficient, as it provides a clear answer to the question. > No, the numbers in the list are not equal to zero. So my question is, if this kind of question pops up in the GMAT, does the sufficiency of the statements only depend on a positive affirmation of the question? I hope I could express what I mean (since I'm not native in English )?! Thanks, Vincent For (1): It's certainly possible all numbers to equal to 0: for example {0, 0, 0} > answer YES. It's also possible one number to be different from 0 and all other numbers to equal to 0 (in this case the product of ANY two numbers in the list will also be equal to 0). For example, {0, 0, 1} > answer NO. As for your other question: in YES/NO DS questions a definite NO answer to the question is still considered to be sufficient. Hope it's clear.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



GMATH Teacher
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 619

Re: If there are more than two numbers in a certain list, is each of the
[#permalink]
Show Tags
19 Oct 2018, 07:14
devinawilliam83 wrote: If there are more than two numbers in a certain list, is each of the numbers in the list equal to 0?
(1) The product of any two numbers in the list is equal to 0. (2) The sum of any two numbers in the list is equal to 0.
\(L = \left\{ {\,{x_1}\,,\,{x_2}\,,\, \ldots \,\,,\,\,{x_n}} \right\}\,\,\,\,,\,\,\,n \geqslant 3\) \(?\,\,\,:\,\,\,{\text{all}}\,\,{\text{zero}}\) \(\left( 1 \right)\,\,\,{x_j} \cdot {x_k} = 0\,\,\,\,\,\left( {j \ne k} \right)\,\,\,\,\,\left\{ \begin{gathered} \,{\text{Take}}\,\,L = \left\{ {0,0, \ldots ,0,0} \right\}\,\,\,\, \Rightarrow \,\,\,\left\langle {{\text{YES}}} \right\rangle \,\, \hfill \\ \,{\text{Take}}\,\,L = \left\{ {0,0, \ldots ,0,1} \right\}\,\,\,\, \Rightarrow \,\,\,\left\langle {{\text{NO}}} \right\rangle \,\,\, \hfill \\ \end{gathered} \right.\) What about statement (2)? Do you "feel" this statement is sufficient... but you cannot be 100% sure? EMBRACE MATHEMATICS and develop your quantitative maturity to EXCEL IN YOUR EXAM (and in the MBA that goes right after it)! \(\left( 2 \right)\,\,\left\{ \begin{gathered} \,{x_j} + {x_k} = 0 \hfill \\ {x_k} + {x_m} = 0 \hfill \\ \end{gathered} \right.\,\,\,\,\,\mathop \Rightarrow \limits^{\left(  \right)} \,\,\,\,\,\,{x_j}  {x_m} = 0\,\,\,\,\,\, \Rightarrow \,\,\,\,\,{x_j} = {x_m}\,\,\,\,{\text{for}}\,\,\,\underline {{\text{ANY}}} \,\,\,\,{x_j}\,,\,\,{x_k}\,,\,\,{x_m}\,\,\,{\text{in}}\,\,L\) \(\,\left\{ \begin{gathered} \,{x_j} = {x_m} \hfill \\ \,0 = {x_j} + {x_m} = 2\,\, \cdot {x_j} \hfill \\ \end{gathered} \right.\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,{x_j} = 0\,\,\,{\text{for}}\,\,{\text{all}}\,\,j\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle\) This solution follows the notations and rationale taught in the GMATH method. Regards, Fabio.
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT) Our highlevel "quant" preparation starts here: https://gmath.net



Manager
Joined: 09 Jun 2014
Posts: 218
Location: India
Concentration: General Management, Operations

Re: If there are more than two numbers in a certain list, is each of the
[#permalink]
Show Tags
19 Oct 2018, 22:44
devinawilliam83 wrote: If there are more than two numbers in a certain list, is each of the numbers in the list equal to 0? (1) The product of any two numbers in the list is equal to 0. (2) The sum of any two numbers in the list is equal to 0. Am unable to understand how the answer is B from II u can have a positive and a negative number totaling to 0 eg. 1+(1). However if we combine both statements the value of all elements is 0.. Pl Help I find picking numbers as the best approach here.statement 1: So lets assume number as 1 ,0 ,0 Clearly the product of any numbers is zero here but not all numbers are zero here. statement 2: So lets assume number set again as as 1 ,0 ,0 The sum cant be zero if you do not have all zero's For a set with equal weighted distribution on both sides across number line (from 0 origin) 1,0,1 or 4,2,0,2,4 6,0,2,4 (here sum of any two numbers can be proved as not zero...say first set 1,0,1 (0+1)=not zero) Hence every element has to be zero So,B is sufficient Press Kudos if it helps!!



GMATH Teacher
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 619

Re: If there are more than two numbers in a certain list, is each of the
[#permalink]
Show Tags
21 Oct 2018, 07:12
fskilnik wrote: (2) The sum of any two numbers in the list is equal to 0.
\(\left( 2 \right)\,\,\left\{ \begin{gathered} \,{x_j} + {x_k} = 0 \hfill \\ {x_k} + {x_m} = 0 \hfill \\ \end{gathered} \right.\,\,\,\,\,\mathop \Rightarrow \limits^{\left(  \right)} \,\,\,\,\,\,{x_j}  {x_m} = 0\,\,\,\,\,\, \Rightarrow \,\,\,\,\,{x_j} = {x_m}\,\,\,\,{\text{for}}\,\,\,\underline {{\text{ANY}}} \,\,\,\,{x_j}\,,\,\,{x_k}\,,\,\,{x_m}\,\,\,{\text{in}}\,\,L\)
\(\,\left\{ \begin{gathered} \,{x_j} = {x_m} \hfill \\ \,0 = {x_j} + {x_m} = 2\,\, \cdot {x_j} \hfill \\ \end{gathered} \right.\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,{x_j} = 0\,\,\,{\text{for}}\,\,{\text{all}}\,\,j\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle\)
I was asked if there is another formal proof of the sufficiency of the statement (2) but in a more "downtoearth" arguments. Certainly! Let´s imagine (at first) that there is a negative number among the elements in the given list, say A. In this case there is another number in the list (say B) such that A+B= 0, hence B must be positive (B=A). Let´s consider any third number (say C) of the list. (We know the list has at least three elements.) It is impossible to have A+C = 0 (C would be positive) and B+C = 0 (C would be negative) simultaneously, therefore there is NO negative number among the elements of the given list. Let´s now imagine that there is a positive number among the elements in the given list, say B. In this case, there is a negative number (say A) so that B+A = 0 (A=B), but we have already proven (in the previous paragraph) that there are NO negative elements in the given list. From both paragraphs above, we are sure all numbers (elements) in the given list must be nonnegative and also nonpositive, hence all of them are equal to zero. Regards, Fabio.
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT) Our highlevel "quant" preparation starts here: https://gmath.net




Re: If there are more than two numbers in a certain list, is each of the &nbs
[#permalink]
21 Oct 2018, 07:12






