GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 17 Nov 2019, 22:58

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If x is an integer, is the median of 5 numbers shown greater than the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Manager
Manager
avatar
Joined: 08 Aug 2005
Posts: 249
If x is an integer, is the median of 5 numbers shown greater than the  [#permalink]

Show Tags

New post 28 Apr 2006, 00:06
8
43
00:00
A
B
C
D
E

Difficulty:

  65% (hard)

Question Stats:

64% (02:26) correct 36% (02:10) wrong based on 493 sessions

HideShow timer Statistics

x, 3, 1, 12, 8

If x is an integer, is the median of 5 numbers shown greater than the average of 5 numbers?

(1) x > 6
(2) x is greater than median of 5 numbers
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 59095
Re: If x is an integer, is the median of 5 numbers shown greater than the  [#permalink]

Show Tags

New post 02 Nov 2010, 09:09
21
22
metallicafan wrote:
\(x, 3, 1, 12, 8\)

If x is an integer, is the median of the 5 numbers shown greater than the average (arithmetic mean) of the 5 numbers?

(1) \(x>6\)
(2) x is greater than the median of the 5 numbers


We have a set: {1, 3, 8, 12, x} Question: is \(median>mean=\frac{x+1+3+8+12}{5}=\frac{x+24}{5}\)? Note that as we have odd (5) # of terms in the set then the median will be the middle term when arranged in ascending (or descending) order. So:
if \(x\leq{3}\): {1, x, 3, 8, 12} then \(median=3\);
if \(3<x\leq{8}\): {1, 3, x, 8, 12} then \(median=x\);
if \(x\geq{8}\): {1, 3, 8, x, 12} then \(median=8\).

(1) \(x>6\). If \(x=7\) then the median will be 7 as well: {1, 3, 7, 8, 12} and mean will be \(mean=\frac{7+24}{5}=6.2\), so \(median=7>mean=6.2\) and the answer is YES BUT if \(x\) is very large number then the median will be 8: {1, 3, 8, 12, x=very large number} and mean will be more than median (for example if \(x=26\) then \(mean=\frac{26+24}{5}=10\), so \(median=8<10=mean\)) and the answer will be NO. Not sufficient.

(2) x is greater than the median of the 5 numbers --> so \(median=8\): now, if \(x=11\) then \(mean=\frac{11+24}{5}=7\), so \(median=8>7=mean\) and the answer is YES. Again it's easy to get answer NO with very large \(x\). Not sufficient.

(1)+(2) Again, x=11 and x=very large number give two diffrent answers to the question. Not sufficeint.

Answer: E.
_________________
General Discussion
Manager
Manager
avatar
Joined: 20 Mar 2005
Posts: 165
Location: Colombia, South America
Re: If x is an integer, is the median of 5 numbers shown greater than the  [#permalink]

Show Tags

New post 28 Apr 2006, 00:55
2
getzgetzu wrote:
x, 3, 1, 12, 8

If x is an integer, is the median of 5 numbers shown greater than the average of 5 numbers?

1) x>6
2) x is greater than median of 5 numbers


(1) insuff.
for instance x can be 7 so median is 7 itself and mean around 5 so mean < median, but x can be 1000 in that case median is 8 but mean is way larger so is not enough

(2) that means that x>8 same problem as statement (1)

together nothing

so I would go with E in this one
Manager
Manager
avatar
Joined: 14 Mar 2006
Posts: 144
Re: If x is an integer, is the median of 5 numbers shown greater than the  [#permalink]

Show Tags

New post 28 Apr 2006, 11:48
1
getzgetzu wrote:
x, 3, 1, 12, 8

If x is an integer, is the median of 5 numbers shown greater than the average of 5 numbers?

1) x>6
2) x is greater than median of 5 numbers


I go for E.

1) x>6, so x could be lets say 9, then median is 8, and the avg is 6.6, however if x is lets say 100, the mean is greater then median, so not suff.

2) similarly since x is greater then the median, 8 is the median, from there its similar to 1). not suff

therefore, E is correct.
Senior Manager
Senior Manager
avatar
Joined: 05 Jan 2006
Posts: 316
Re: If x is an integer, is the median of 5 numbers shown greater than the  [#permalink]

Show Tags

New post 28 Apr 2006, 21:14
1
1,3,8,12 and Now we need to plug in X

1) x>6...7 to inf
X mean med
7 31/5 7
8 32/5 8
9 33/5 8
100 124/5 8

In suffi

2) x is greater than med

1,3,8,x,12
or
1,3,8,12,x

Again pluging number insufficient

Togather no furthere info

hence E
VP
VP
avatar
Joined: 10 Jun 2007
Posts: 1063
Re: If x is an integer, is the median of 5 numbers shown greater than the  [#permalink]

Show Tags

New post 19 Jun 2007, 15:35
1
1
LM wrote:
x,3,1,12,8

If x is an integer, is the median of the 5 numbers shown greater than the average (arithmetic mean ) of the 5 numbers ?

(1) X > 6

(2) X is greater than the median of the 5 numbes.


Got E.

(1) plug in x = 7, the lowest avg value is (7+3+1+12+8) / 5 = 31/5 =~ 6
This is lower than the median, which is 7 in this case. However, if x is really large, the avg will shoot through the roof, but the median will remain at 8. INSUFFICIENT.

(2) This tells us that x>8, so plug in x=9. We get (9+3+1+12+8) / 5 = 33/5 =~ 6.6. This still less than 8 ,which is the median. Same reason as above, INSUFFICIENT.

Together, we get x>8, INSUFFICIENT.
Intern
Intern
avatar
Joined: 03 Nov 2011
Posts: 7
Re: If x is an integer, is the median of 5 numbers shown greater than the  [#permalink]

Show Tags

New post 23 May 2012, 20:44
1
1
we can arrange this question like this
1,3,x,8,12 or 1,3,8,x,12 or 1,3,8,12,x
so st 1 (24+x)/5< x,or 8 or 12 it give three different solution i.e 6<x,x<16,x<36 so seems to not sff

st 2 xis greater > median by arrange he series we get 1 3 8 x 12 or 1 3 8 12 x where 8 is median so
24+x<8 ====>x <16 so foe any value of x it gives different result.

and combining 1 n 2 x>6 and x<16 take any value so
it seems to me asn sd be E

if any err let me know plz....
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 59095
Re: If x is an integer, is the median of 5 numbers shown greater than the  [#permalink]

Show Tags

New post 23 May 2012, 23:47
7
11
getzgetzu wrote:
x, 3, 1, 12, 8

If x is an integer, is the median of 5 numbers shown greater than the average of 5 numbers?

(1) x>6
(2) x is greater than median of 5 numbers


Given set {1, 3, 8, 12, x}

The questions asks whether median>average, or whether median>(24+x)/5.

(1) x>6 --> if x=11 then median=8 (the middle number) and average=(24+x)/5=7, so median>average but if x=16 then median=8 and average=(24+x)/5=8, so median=average. Not sufficient.

(2) x is greater than median of 5 numbers --> median=8. Not sufficient.

(1)+(2) Examples from (1) are still valid so we still have two different answers. Not sufficient.

Answer: E.
_________________
Math Revolution GMAT Instructor
User avatar
V
Joined: 16 Aug 2015
Posts: 8147
GMAT 1: 760 Q51 V42
GPA: 3.82
Re: If x is an integer, is the median of 5 numbers shown greater than the  [#permalink]

Show Tags

New post 19 Dec 2015, 05:19
1
x,3,1,12,8

If x is an integer, is the median of the 5 numbers shown greater than the average (arithmetic mean ) of the 5 numbers ?

(1) x > 6

(2) x is greater than the median of the 5 numbers.

In the original condition, there is 1 variable(x), which should match with the number of equation. So you need 1 more equation. For 1), 1 equation, for 2) 1 equation, which is likely to make D the answer. In 1) & 2),
for 1), when x>0, 1,3,x,8,12/1,3,8,x,12/1,3,8,12,x. mean=(1+3+8+12+x)/5=(24+x)/5 and median=x,8. So, (24+x)/5>x? or (24+x)/5>8? is unknown, which is not sufficient.
For 2), in the above, median is 3, x, 8 and from x>3, x>x(impossible), x>8, it is x>8>3. So, although x>8, (24+x)/5>8?, which is x>16?, is not sufficient. Even if 1) & 2), when x>8, you cannot find out (24+x)/5>8?, x>16? from x>8>6>3. Therefore it is not sufficient and the answer is E.


-> For cases where we need 1 more equation, such as original conditions with “1 variable”, or “2 variables and 1 equation”, or “3 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 59 % chance that D is the answer, while A or B has 38% chance and C or E has 3% chance. Since D is most likely to be the answer using 1) and 2) separately according to DS definition. Obviously there may be cases where the answer is A, B, C or E.
_________________
MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
"Only $79 for 1 month Online Course"
"Free Resources-30 day online access & Diagnostic Test"
"Unlimited Access to over 120 free video lessons - try it yourself"
Retired Moderator
avatar
Joined: 29 Oct 2013
Posts: 248
Concentration: Finance
GPA: 3.7
WE: Corporate Finance (Retail Banking)
GMAT ToolKit User
Re: If x is an integer, is the median of 5 numbers shown greater than the  [#permalink]

Show Tags

New post 23 Dec 2015, 09:14
1
Mean has a greater flexibility in terms of how big it can get. So for the median to be greater than the mean we need to limit the upward movement of the mean by restricting the value of x. Thus we need a constraint such as x<(certain number) and since neither of the choices does so answer is E.

For instance, even if we were given x>0
then say x=1 {1 1 3 8 12} 3>25/5? NO
now say x=8 {1 3 7 8 12} 8>(24+8)/5? Yes

on the other hand, say if we were given x<6, the answer would be a definitive No

would you pls confirm if that logic looks good, Bunuel?
_________________
Please contact me for super inexpensive quality private tutoring

My journey V46 and 750 -> http://gmatclub.com/forum/my-journey-to-46-on-verbal-750overall-171722.html#p1367876
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 13598
Re: If x is an integer, is the median of 5 numbers shown greater than the  [#permalink]

Show Tags

New post 21 Oct 2019, 01:03
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Bot
Re: If x is an integer, is the median of 5 numbers shown greater than the   [#permalink] 21 Oct 2019, 01:03
Display posts from previous: Sort by

If x is an integer, is the median of 5 numbers shown greater than the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne