Author 
Message 
TAGS:

Hide Tags

Manager
Joined: 17 Jul 2010
Posts: 124

root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
02 Dec 2012, 14:29
1
This post received KUDOS
7
This post was BOOKMARKED
Question Stats:
58% (01:59) correct
42% (01:02) wrong based on 516 sessions
HideShow timer Statistics
\(\sqrt{X+Y} = 4\) and \(\sqrt{X}\sqrt{Y}=0\) A. X= 2 B. X = 8 C. X= 8 D. X = 2 E. X=Y Detailed Solutions = Kudos! Kudos if you liked!
Official Answer and Stats are available only to registered users. Register/ Login.



Math Expert
Joined: 02 Sep 2009
Posts: 39589

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
02 Dec 2012, 14:34
1
This post received KUDOS
Expert's post
5
This post was BOOKMARKED



Manager
Joined: 16 Feb 2012
Posts: 230
Concentration: Finance, Economics

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
19 Feb 2013, 05:06
In this problem the answer could also be X=Y, isn't it?
_________________
Kudos if you like the post!
Failing to plan is planning to fail.



Director
Status: Done with formalities.. and back..
Joined: 15 Sep 2012
Posts: 641
Location: India
Concentration: Strategy, General Management
Schools: Olin  Wash U  Class of 2015
WE: Information Technology (Computer Software)

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
19 Feb 2013, 05:22
4
This post received KUDOS
Stiv wrote: In this problem the answer could also be X=Y, isn't it? Yes, absolutely right. One reason why only official questions should be used for practice.
_________________
Lets Kudos!!! Black Friday Debrief



Manager
Joined: 16 Feb 2012
Posts: 230
Concentration: Finance, Economics

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
20 Feb 2013, 03:56
You have a kudos for this statement! 100% agree with you...
_________________
Kudos if you like the post!
Failing to plan is planning to fail.



Manager
Joined: 24 Jan 2013
Posts: 79

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
20 Feb 2013, 17:46
1
This post received KUDOS
1
This post was BOOKMARKED
Solutions provided before were partially correct:
\(\sqrt{X+Y}=4\) > pass square root to the other side: X+Y=16; \(\sqrt{X}\sqrt{Y}=0\) > \(\sqrt{X}=\sqrt{Y}\) > pass square root to the other side: X=\((\sqrt{Y})^2\) > X=Y > X=+Y or X=Y
So, we have that X+Y=16 and X=+Y or X=Y > we don't care here if Y is positive or negative, as we take always the absolute value Y > therefore this is true always 2X=16 > X=8.
BUT X=Y is NOT true, as X=Y... this means X=8 and Y could be +8 or 8.
Answer: C.



Manager
Joined: 24 Jan 2013
Posts: 79

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
20 Feb 2013, 17:47
Vips0000 wrote: Stiv wrote: In this problem the answer could also be X=Y, isn't it? Yes, absolutely right. One reason why only official questions should be used for practice. Read my post... you are not right in this case



Director
Status: Done with formalities.. and back..
Joined: 15 Sep 2012
Posts: 641
Location: India
Concentration: Strategy, General Management
Schools: Olin  Wash U  Class of 2015
WE: Information Technology (Computer Software)

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
20 Feb 2013, 23:29
1
This post received KUDOS
johnwesley wrote: Vips0000 wrote: Stiv wrote: In this problem the answer could also be X=Y, isn't it? Yes, absolutely right. One reason why only official questions should be used for practice. Read my post... you are not right in this case Really? Check your solution once again... or rather.. steps.. its not a solution, if its not correct! Let me point out basic mistakes! Your solution is, x= 8, y =8 or 8 Are these value correct for \(\sqrt{x+y}=4\) if you use x=8 and y=8 then NO. so y=8 is NOT a solution Alright, lets take second equation, \(\sqrt{x}\sqrt{y}=0\) Do you think \(\sqrt{8}\sqrt{8}=0\) ?? its NOT. Stiv was absolutely right there and so was I
_________________
Lets Kudos!!! Black Friday Debrief



Manager
Joined: 24 Jan 2013
Posts: 79

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
21 Feb 2013, 01:42
Vips0000 wrote: johnwesley wrote: Vips0000 wrote: Yes, absolutely right. One reason why only official questions should be used for practice. Read my post... you are not right in this case Really? Check your solution once again... or rather.. steps.. its not a solution, if its not correct! Let me point out basic mistakes! Your solution is, x= 8, y =8 or 8 Are these value correct for \(\sqrt{x+y}=4\) if you use x=8 and y=8 then NO. so y=8 is NOT a solution Alright, lets take second equation, \(\sqrt{x}\sqrt{y}=0\) Do you think \(\sqrt{8}\sqrt{8}=0\) ?? its NOT. Stiv was absolutely right there and so was I Let me tell you (again), that you are wrong, and your response now shows I need to explain slowly: MY solution is, x= 8, y =8 or 8 AND x=y Completely CORRECT for \(\sqrt{y+y}=4\) BUT you cannot say x=y, as x=y In GMAT, you cannot assume a variable is either positive or negative. USE THE X OR Y AS IF THEY CAN BE POSITIVE OR NEGATIVE, NOBODY TELLS YOU THE OPPOSITE. And I have demonstrated X is always 8, and Y could be +8 or 8, as the square root of X+Y means square root of Y+Y. Your solution dismiss important information on the way, and mine is more complete. Therefore, my solution (again) is CORRECT.



Director
Status: Done with formalities.. and back..
Joined: 15 Sep 2012
Posts: 641
Location: India
Concentration: Strategy, General Management
Schools: Olin  Wash U  Class of 2015
WE: Information Technology (Computer Software)

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
21 Feb 2013, 01:56
1
This post received KUDOS
johnwesley wrote: Let me tell you (again), that you are wrong, and your response now shows I need to explain slowly:
MY solution is, x= 8, y =8 or 8 AND x=y Completely CORRECT for \(\sqrt{y+y}=4\) BUT you cannot say x=y, as x=y
In GMAT, you cannot assume a variable is either positive or negative. USE THE X OR Y AS IF THEY CAN BE POSITIVE OR NEGATIVE, NOBODY TELLS YOU THE OPPOSITE. And I have demonstrated X is always 8, and Y could be +8 or 8, as the square root of X+Y means square root of Y+Y. Your solution dismiss important information on the way, and mine is more complete.
Therefore, my solution (again) is CORRECT. I'm not sure if you know the basic rules of solving an equation. The end solutions that you get should satisfy the original equation  Only then they are considered a solution. if x=8 and y=8 both equations are satisfied. if x=8 and y=8 none of the equations are satisfied. Therefore the only solution is, when x=y=8. Regarding your solution its absolutely wrong if you talk about Maths in general. And its a blunder, if you talk about GMAT in particular. if Y were to be 8, sqrt (Y) would be undefined on GMAT.
_________________
Lets Kudos!!! Black Friday Debrief



Manager
Joined: 24 Jan 2013
Posts: 79

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
21 Feb 2013, 02:19
Vips0000 wrote: johnwesley wrote: Let me tell you (again), that you are wrong, and your response now shows I need to explain slowly:
MY solution is, x= 8, y =8 or 8 AND x=y Completely CORRECT for \(\sqrt{y+y}=4\) BUT you cannot say x=y, as x=y
In GMAT, you cannot assume a variable is either positive or negative. USE THE X OR Y AS IF THEY CAN BE POSITIVE OR NEGATIVE, NOBODY TELLS YOU THE OPPOSITE. And I have demonstrated X is always 8, and Y could be +8 or 8, as the square root of X+Y means square root of Y+Y. Your solution dismiss important information on the way, and mine is more complete.
Therefore, my solution (again) is CORRECT. I'm not sure if you know the basic rules of solving an equation. The end solutions that you get should satisfy the original equation  Only then they are considered a solution. if x=8 and y=8 both equations are satisfied. if x=8 and y=8 none of the equations are satisfied. Therefore the only solution is, when x=y=8. Regarding your solution its absolutely wrong if you talk about Maths in general. And its a blunder, if you talk about GMAT in particular. if Y were to be 8, sqrt (Y) would be undefined on GMAT. I have explained twice and there is no flaw. It is simply the correct way of solving this kind of problems where nobody tells you X or Y are positive or negative. My solution is: Completely CORRECT for \(\sqrt{y+y}=4\) Completely CORRECT for \(\sqrt{x}\sqrt{y}=0\), because as you say, this could be undefined... but simply do \(\sqrt{x}=\sqrt{y}\) and then X=Y... magic!... your indefinition has gone while you keep all the possible outcomes of this equation. Your solution does dismiss important and basic information given by the equations. I am still laughing you say I don't know solving equations.



Manager
Joined: 20 Feb 2009
Posts: 76
Location: chennai

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
21 Feb 2013, 03:06
\sqrt{x+y}=4 squaring both sides => x+y=16  eq(1) \sqrt{x}\sqrt{y}=0 squaring both the sides => (\sqrt{x}\sqrt{y})^2 =x2*\sqrt{xy}+y implies x+y=2*\sqrt{xy}  eq(2) substitute eq(1) in eq(2) 2*\sqrt{xy}=16 \sqrt{xy}=8 squaring both sides the above eqn => xy=64 we knew that x+y=16 y=16x x*(16x)=64 x^216x+64=0 hence x=8
Ans (c)



Director
Status: Done with formalities.. and back..
Joined: 15 Sep 2012
Posts: 641
Location: India
Concentration: Strategy, General Management
Schools: Olin  Wash U  Class of 2015
WE: Information Technology (Computer Software)

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
21 Feb 2013, 03:27
1
This post received KUDOS
johnwesley wrote: I have explained twice and there is no flaw. It is simply the correct way of solving this kind of problems where nobody tells you X or Y are positive or negative.
My solution is:
Completely CORRECT for \(\sqrt{y+y}=4\)
Completely CORRECT for \(\sqrt{x}\sqrt{y}=0\), because as you say, this could be undefined... but simply do \(\sqrt{x}=\sqrt{y}\) and then X=Y... magic!... your indefinition has gone while you keep all the possible outcomes of this equation. Your solution does dismiss important and basic information given by the equations.
I am still laughing you say I don't know solving equations. Yup, I stand by what I said. I would say, go back to basics; specially when I see comments like this: "Completely CORRECT for \(\sqrt{y+y}=4\)"you dont put y that you derived as intermediate solution in original equation and check validity of your solution. This is stupidity at best. And since you are so adamant on proving others wrong (with comments like partially correct solution, you are wrong, again wrong etc). Here is my open challenge to you: If one expert (Who is also a long time GMAT clubber so we know its really an expert) says that your solution is correct I'll get all my kudos (200) transferred to you. Let me see whats your best bet!
_________________
Lets Kudos!!! Black Friday Debrief



Manager
Joined: 24 Jan 2013
Posts: 79

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
21 Feb 2013, 05:26
Ok, I have no problem to admit my error now I see. In fact \(\sqrt{y+y}=4\) is a complete nonsense for values of y<0. I really don't know how I wrote that stupidity. All I wanted to do is point out that in GMAT, you cannot assume a variable is either positive or negative. But my calculations where wrong and I promise to be more cautious next time. And doing numbers again: \(x+y=16\) and \(\sqrt{x}=\sqrt{y}\) meaning x=y (case a) or y=x (case b) I could develop option a.1 (x=y and y>0) and option a.2 (x=y and y<0), b.1 (y=x and x>0) and option b.2 (y=x and x<0). But with the equation \(x+y=16\) we directly disregard that y<0 or that x<0. Therefore the solutions can be x=8, and x=y I never meant detracting your stripes or wings as GMAT master or director, only have fun answering questions. I also never meant to be adamant, but apologies if that is what it looked like, and thanks anyway for the discussion



Director
Status: Done with formalities.. and back..
Joined: 15 Sep 2012
Posts: 641
Location: India
Concentration: Strategy, General Management
Schools: Olin  Wash U  Class of 2015
WE: Information Technology (Computer Software)

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
21 Feb 2013, 20:35
johnwesley wrote: Ok, I have no problem to admit my error now I see. In fact \(\sqrt{y+y}=4\) is a complete nonsense for values of y<0. I really don't know how I wrote that stupidity. Great that you finally saw it Quote: And doing numbers again: \(x+y=16\) and \(\sqrt{x}=\sqrt{y}\) meaning x=y (case a) or y=x (case b) I could develop option a.1 (x=y and y>0) and option a.2 (x=y and y<0), b.1 (y=x and x>0) and option b.2 (y=x and x<0). But with the equation \(x+y=16\) we directly disregard that y<0 or that x<0. Therefore the solutions can be x=8, and x=y Again, it doesnt require this much work or effort. if you observe second equation once carefully, you would notice that x and y need to be greater than or equal to 0 in GMAT context (root of negative number not defined in GMAT).
_________________
Lets Kudos!!! Black Friday Debrief



Manager
Joined: 16 Feb 2012
Posts: 230
Concentration: Finance, Economics

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
22 Feb 2013, 03:22
Finally peace, you two were quite interesting guys!!! :D Nobody will make mistake in this question again because you elaborated it to the ground! :D Thanks to both of you, this is why I love GMATClub...
_________________
Kudos if you like the post!
Failing to plan is planning to fail.



Intern
Joined: 16 Jan 2013
Posts: 23

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
22 Feb 2013, 07:48
johnwesley wrote: Solutions provided before were partially correct:
\(\sqrt{X+Y}=4\) > pass square root to the other side: X+Y=16; \(\sqrt{X}\sqrt{Y}=0\) > \(\sqrt{X}=\sqrt{Y}\) > pass square root to the other side: X=\((\sqrt{Y})^2\) > X=Y > X=+Y or X=Y
So, we have that X+Y=16 and X=+Y or X=Y > we don't care here if Y is positive or negative, as we take always the absolute value Y > therefore this is true always 2X=16 > X=8.
BUT X=Y is NOT true, as X=Y... this means X=8 and Y could be +8 or 8.
Answer: C. y cannot be 8 as square_root_of(8) is an imaginary number, if nothing is mentioned we assume the number to be as real numbers



Current Student
Joined: 06 Sep 2013
Posts: 1998
Concentration: Finance

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
08 Oct 2013, 13:57
feellikequitting wrote: \(\sqrt{X+Y} = 4\) and \(\sqrt{X}\sqrt{Y}=0\)
A. X= 2 B. X = 8 C. X= 8 D. X = 2 E. X=Y
Detailed Solutions = Kudos! Kudos if you liked! Why is answer (E) given anyways? Technically it could be correct as well no? Cause x=y=8. Please clarify Nice question, thks



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7438
Location: Pune, India

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
08 Oct 2013, 22:00
2
This post received KUDOS
Expert's post
1
This post was BOOKMARKED
jlgdr wrote: feellikequitting wrote: \(\sqrt{X+Y} = 4\) and \(\sqrt{X}\sqrt{Y}=0\)
A. X= 2 B. X = 8 C. X= 8 D. X = 2 E. X=Y
Detailed Solutions = Kudos! Kudos if you liked! Why is answer (E) given anyways? Technically it could be correct as well no? Cause x=y=8. Please clarify Nice question, thks Actually, technically, x = y is not a solution to this set of equations. We cannot say that wherever x = y, the relations will hold. Say if x = y = 2, the first equation will not hold. But when x = 8, you put it in the second equation, get y = 8 (so you get x = y as an intermediate result) and then you put both x = 8 and y = 8 in equation 1 which holds for these values.
_________________
Karishma Veritas Prep  GMAT Instructor My Blog
Get started with Veritas Prep GMAT On Demand for $199
Veritas Prep Reviews



Intern
Joined: 14 Mar 2013
Posts: 48
Location: United States
Concentration: General Management, Leadership
GMAT Date: 12032013
WE: General Management (Retail)

Re: root(x+y)=4 and root(x)root(y)=0 [#permalink]
Show Tags
19 Nov 2013, 15:31
VeritasPrepKarishma wrote: jlgdr wrote: feellikequitting wrote: \(\sqrt{X+Y} = 4\) and \(\sqrt{X}\sqrt{Y}=0\)
A. X= 2 B. X = 8 C. X= 8 D. X = 2 E. X=Y
Detailed Solutions = Kudos! Kudos if you liked! Why is answer (E) given anyways? Technically it could be correct as well no? Cause x=y=8. Please clarify Nice question, thks Actually, technically, x = y is not a solution to this set of equations. We cannot say that wherever x = y, the relations will hold. Say if x = y = 2, the first equation will not hold. But when x = 8, you put it in the second equation, get y = 8 (so you get x = y as an intermediate result) and then you put both x = 8 and y = 8 in equation 1 which holds for these values. First I was going for E, but I remebered that X=Y "actually, technically, is not a solution". End of discussion. Thanks VeritasPrepKarishma




Re: root(x+y)=4 and root(x)root(y)=0
[#permalink]
19 Nov 2013, 15:31



Go to page
1 2
Next
[ 25 posts ]



