Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

a, b, c, and d are positive integers. If the remainder is 9 [#permalink]

Show Tags

07 Jan 2013, 06:59

3

This post received KUDOS

6

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

45% (medium)

Question Stats:

71% (02:23) correct
29% (02:09) wrong based on 262 sessions

HideShow timer Statistics

a, b, c, and d are positive integers. If the remainder is 9 when a is divided by b, and the remainder is 5 when c is divided by d, which of the following is NOT a possible value for b + d?

Official Answer and Stats are available only to registered users. Register/Login.

_________________

Don't give up on yourself ever. Period. Beat it, no one wants to be defeated (My journey from 570 to 690): http://gmatclub.com/forum/beat-it-no-one-wants-to-be-defeated-journey-570-to-149968.html

Re: a, b, c, and d are positive integers. If the remainder is 9 [#permalink]

Show Tags

07 Jan 2013, 07:21

3

This post received KUDOS

When a is divided by b remainder is 9 that means b is greater than or equals to 10, similarly d is greater than or equals to 6. b + d cannot be 15, hence E is the answer.

Among the answer choices, the only value that does NOT satisfy above constraint is 15.

Hence choice(E) is the answer.

Hi can u please explain highlighted part? I missing sumthing here..

If \(x\) and \(y\) are positive integers, there exist unique integers \(q\) and \(r\), called the quotient and remainder, respectively, such that \(y =divisor*quotient+remainder= xq + r\) and \(0\leq{r}<x\).

For example, when 15 is divided by 6, the quotient is 2 and the remainder is 3 since \(15 = 6*2 + 3\).

Notice that \(0\leq{r}<x\) means that remainder is a non-negative integer and always less than divisor.

a, b, c, and d are positive integers. If the remainder is 9 when a is divided by b, and the remainder is 5 when c is divided by d, which of the following is NOT a possible value for b + d?

(A) 20 (B) 19 (C) 18 (D) 16 (E) 15

According to the above, since the remainder is 9 when a is divided by b, then b (divisor) must be greater than 9 (remainder). So, the least value of b is 10.

Similarly, since he remainder is 5 when c is divided by d, then d must be greater than 5. So, the least value of d is 6.

Hence, the least value of b + d is 10 + 6 = 16. Therefore 15 (option E) is NOT a possible value for b + d.

Re: a, b, c, and d are positive integers. If the remainder is 9 [#permalink]

Show Tags

06 Apr 2014, 10:27

what if a = 1 and b= 9...then wouldn't 1/9 still have a remainder of 9? doesn't the rule that b must be greater than or equal to 10 not hold in this case?

what if a = 1 and b= 9...then wouldn't 1/9 still have a remainder of 9? doesn't the rule that b must be greater than or equal to 10 not hold in this case?

Posted from my mobile device

No.

Let me ask you a question: how many leftover apples would you have if you had 1 apple and wanted to distribute in 9 baskets evenly? Each basket would get 0 apples and 1 apple would be leftover (remainder).

When a divisor is more than dividend, then the remainder equals to the dividend, for example: 3 divided by 4 yields the reminder of 3: \(3=4*0+3\); 9 divided by 14 yields the reminder of 9: \(9=14*0+9\); 1 divided by 9 yields the reminder of 1: \(1=9*0+1\).

Re: a, b, c, and d are positive integers. If the remainder is 9 [#permalink]

Show Tags

23 Nov 2016, 06:22

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: a, b, c, and d are positive integers. If the remainder is 9 [#permalink]

Show Tags

15 Mar 2017, 13:51

To answer, we must recognize an important rule: the divisor must be greater than the remainder. Let's look at a few examples: 10 ÷ 4 = 2 remainder 2 (divisor 4 is greater than remainder 2) 23 ÷ 6 = 3 remainder 5 (divisor 6 is greater than remainder 5)

If the divisor weren't greater than the remainder, the divisor would be able to divide into the dividend at least one more time. Let's take an incorrect example to illustrate: 23 ÷ 6 = 2 remainder 11.

In this case, we've framed the operation such that the divisor is LESS than the remainder (6 is less than 11). The error is that 6 actually goes into 23 three times. The remainder is what is left over when the divisor has been divided into the dividend as many times as possible. Therefore, if a divided by b gives a remainder of 9, we can conclude that b is greater than 9: b ≥ 10.

Likewise, if c divided by d gives a remainder of 5, we can conclude that d is greater than 5: d ≥ 6. Therefore, we can determine a minimum for the sum: b + d ≥ 16. Only 15 is too small.

There’s something in Pacific North West that you cannot find anywhere else. The atmosphere and scenic nature are next to none, with mountains on one side and ocean on...

This month I got selected by Stanford GSB to be included in “Best & Brightest, Class of 2017” by Poets & Quants. Besides feeling honored for being part of...

Joe Navarro is an ex FBI agent who was a founding member of the FBI’s Behavioural Analysis Program. He was a body language expert who he used his ability to successfully...