It is currently 13 Dec 2017, 20:40

Decision(s) Day!:

CHAT Rooms | Ross R1 | Kellogg R1 | Darden R1 | Tepper R1


Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

A Four digit safe code does not contain the digits 1 and 4..

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Intern
Intern
avatar
Joined: 30 Aug 2010
Posts: 13

Kudos [?]: 51 [0], given: 2

A Four digit safe code does not contain the digits 1 and 4.. [#permalink]

Show Tags

New post 21 Sep 2010, 05:34
4
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  65% (hard)

Question Stats:

67% (01:30) correct 33% (02:04) wrong based on 220 sessions

HideShow timer Statistics

A four digit safe code does not contain the digits 1 and 4 at all. What is the probability that it has at least one even digit?

a) ¼
b) ½
c) ¾
d) 15/16
e) 1/16
[Reveal] Spoiler: OA

Kudos [?]: 51 [0], given: 2

1 KUDOS received
Intern
Intern
avatar
Joined: 30 Aug 2010
Posts: 13

Kudos [?]: 51 [1], given: 2

Re: A Four digit safe code does not contain the digits 1 and 4.. [#permalink]

Show Tags

New post 21 Sep 2010, 05:35
1
This post received
KUDOS
2
This post was
BOOKMARKED
As already said in a previous post (out-of-a-box-that-contains-4-black-and-6-white-mice-101375.html), I'm experiencing some problems with probability and combinations. So to understand better these arguments, I need to solve the problem in several ways. Unfortunately approaches 2 and 4 are missing. Could you help me?

1) probability approach:
Probability of at least one even digit = Probability of one even digit + Probability of two even digits + Probability of three even digits + Probability of four even digits
I have four even digits: 0,2,6,8 and four odd digits: 3,5,7,9
So the probability of even digit is \(1/2\), as well of odd digit.

P1 = \(1/2\)
P2 = \(1/2^2=1/4\)
P3 = \(1/2^3=1/8\)
P4 = \(1/2^4=1/16\)
P = P1+P2+P3+P4 = \(15/16\)

2) combinatorial approach:
This approach is missing.

3) reversal probability approach:
Probability of at least one even digit = 1 - Probability of four odd digits
P = \(1 - 1/2^4 = 15/16\)

3) reversal combinatorial approach:
This approach is missing.

Kudos [?]: 51 [1], given: 2

1 KUDOS received
Retired Moderator
User avatar
Joined: 02 Sep 2010
Posts: 792

Kudos [?]: 1231 [1], given: 25

Location: London
GMAT ToolKit User Reviews Badge
Re: A Four digit safe code does not contain the digits 1 and 4.. [#permalink]

Show Tags

New post 21 Sep 2010, 05:46
1
This post received
KUDOS
Combinatorial Solution

No of ways to form code with atleast 1 even digit = Total Ways - No of ways to form code with only odd digits

The digits available are {5,6,7,8,9,0}

Total ways are 6x6x6x6 = 6^4

Ways using only odd digits = 3x3x3x3 = 3^4

Therefore Probability = \(\frac{6^4 - 3^4}{6^4} = 1 - \frac{3^4}{6^4} = 1 - (1/2)^4 = 15/16\)
_________________

Math write-ups
1) Algebra-101 2) Sequences 3) Set combinatorics 4) 3-D geometry

My GMAT story

GMAT Club Premium Membership - big benefits and savings

Kudos [?]: 1231 [1], given: 25

2 KUDOS received
Intern
Intern
avatar
Joined: 30 Aug 2010
Posts: 13

Kudos [?]: 51 [2], given: 2

Re: A Four digit safe code does not contain the digits 1 and 4.. [#permalink]

Show Tags

New post 21 Sep 2010, 05:58
2
This post received
KUDOS
1
This post was
BOOKMARKED
shrouded1 wrote:
Combinatorial Solution

No of ways to form code with atleast 1 even digit = Total Ways - No of ways to form code with only odd digits

The digits available are {5,6,7,8,9,0}

Total ways are 6x6x6x6 = 6^4

Ways using only odd digits = 3x3x3x3 = 3^4

Therefore Probability = \(\frac{6^4 - 3^4}{6^4} = 1 - \frac{3^4}{6^4} = 1 - (1/2)^4 = 15/16\)


Your approach is correct (even if I would call it reversal combinatorial approach) but with this number:
Digits available are {0,2,3,5,6,7,8,9,0}
Total ways are = 8x8x8x8 = \(8^4 = 2^{12}\)
Ways using only odd digits = 4x4x4x4 = \(4^4 = 2^8\)
Therefore probability = \(\frac{2^{12} - 2^8}{2^{12}} = 1 - \frac{2^8}{2^{12}} = 1 - (1/2)^4 = 15/16\)

Thanks a lot!

Kudos [?]: 51 [2], given: 2

Retired Moderator
User avatar
Joined: 02 Sep 2010
Posts: 792

Kudos [?]: 1231 [0], given: 25

Location: London
GMAT ToolKit User Reviews Badge
Re: A Four digit safe code does not contain the digits 1 and 4.. [#permalink]

Show Tags

New post 21 Sep 2010, 06:04
oh now i see it, i thought you said none of the digits from 1 to 4, but as you pointed out the solution remains the same.

The "direct combinatorial" approach as you call it will be painful in this case. You will need to calculate each of 1 even, 2 even, 3 even, all even. The terms are themselves probably easy enough to calculate, but simplifying will be a bit tedious to get the same answer
_________________

Math write-ups
1) Algebra-101 2) Sequences 3) Set combinatorics 4) 3-D geometry

My GMAT story

GMAT Club Premium Membership - big benefits and savings

Kudos [?]: 1231 [0], given: 25

1 KUDOS received
Retired Moderator
User avatar
Joined: 02 Sep 2010
Posts: 792

Kudos [?]: 1231 [1], given: 25

Location: London
GMAT ToolKit User Reviews Badge
Re: A Four digit safe code does not contain the digits 1 and 4.. [#permalink]

Show Tags

New post 21 Sep 2010, 06:43
1
This post received
KUDOS
rraggio wrote:
As already said in a previous post (out-of-a-box-that-contains-4-black-and-6-white-mice-101375.html), I'm experiencing some problems with probability and combinations. So to understand better these arguments, I need to solve the problem in several ways. Unfortunately approaches 2 and 4 are missing. Could you help me?

1) probability approach:
Probability of at least one even digit = Probability of one even digit + Probability of two even digits + Probability of three even digits + Probability of four even digits
I have four even digits: 0,2,6,8 and four odd digits: 3,5,7,9
So the probability of even digit is \(1/2\), as well of odd digit.

P1 = \(1/2\)
P2 = \(1/2^2=1/4\)
P3 = \(1/2^3=1/8\)
P4 = \(1/2^4=1/16\)
P = P1+P2+P3+P4 = \(15/16\)


I know you got to the answer, but your approach isnt quite correct.

P1 = Probability of exactly 1 even digit = (1/2)^4 * C(4,1) = 4/16
P2 = Probability of exactly 2 even digits = (1/2)^4 * C(4,2) = 6/16
P3 = Probability of exactly 3 even digits = (1/2)^4 * C(4,3) = 4/16
P4 = Probability of 4 even digits = 1/16
P = P1+P2+P3+P4 = 15/16

You have calculated P1 as prob of at least 1 even digit, P2 as atleast 2 even digits etc. This is incorrect. Its only coincidence that the answer is correct.
_________________

Math write-ups
1) Algebra-101 2) Sequences 3) Set combinatorics 4) 3-D geometry

My GMAT story

GMAT Club Premium Membership - big benefits and savings

Kudos [?]: 1231 [1], given: 25

1 KUDOS received
CEO
CEO
User avatar
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2754

Kudos [?]: 1927 [1], given: 235

Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Reviews Badge
Re: A Four digit safe code does not contain the digits 1 and 4.. [#permalink]

Show Tags

New post 21 Sep 2010, 06:57
1
This post received
KUDOS
probability of at least one even = 1-(probability of none even)

probability of none even = required cases/total cases

total cases = 8*8*8*8 as 0 2 3 5 6 7 8 9 all 8 can be taken for each digit

required cases = 4*4*4*4 as only 3 5 7 9 can be taken

probability of none even = \(\frac{4*4*4*4}{(8*8*8*8)}= \frac{1}{16}\)

probability of at least one even =\(1-\frac{1}{16} = \frac{15}{16}\)
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned :)

Jo Bole So Nihaal , Sat Shri Akaal

:thanks Support GMAT Club by putting a GMAT Club badge on your blog/Facebook :thanks

GMAT Club Premium Membership - big benefits and savings

Gmat test review :
http://gmatclub.com/forum/670-to-710-a-long-journey-without-destination-still-happy-141642.html

Kudos [?]: 1927 [1], given: 235

1 KUDOS received
Senior Manager
Senior Manager
avatar
Joined: 20 Jul 2010
Posts: 253

Kudos [?]: 103 [1], given: 9

GMAT ToolKit User Reviews Badge
Re: A Four digit safe code does not contain the digits 1 and 4.. [#permalink]

Show Tags

New post 21 Sep 2010, 15:55
1
This post received
KUDOS
I solved the question thinking 1,2,3 and 4 are not allowed in safecode and got same answer :). My ratios were
3*3*3*3/(6*6*6*6). So by coincidence I got same answer :)
_________________

If you like my post, consider giving me some KUDOS !!!!! Like you I need them

Kudos [?]: 103 [1], given: 9

Intern
Intern
avatar
Joined: 10 Oct 2010
Posts: 23

Kudos [?]: 24 [0], given: 1

Location: Texas
Re: A Four digit safe code does not contain the digits 1 and 4.. [#permalink]

Show Tags

New post 11 Oct 2010, 15:36
rraggio wrote:
A four digit safe code

Permutation
(_)(_)(_)(_)

Note: A safe code can have 0 as the thousands digit; a 4-digit number cannot.

rraggio wrote:
does not contain the digits 1 and 4 at all.

Bag of 8 choices w/ replacement.

rraggio wrote:
What is the probability that it has at least one even digit?

"At least" means Probability Table. Create and work backwards.

****************************
# of evens: Events
0:
1:
2:
3:
4:
----------------------------
Total =
****************************

Total = Fill in Permutation above = 8P4 = (8)(8)(8)(8)

4 evens:
4 evens pick 1 AND
4 evens pick 1 AND
4 evens pick 1 AND
4 evens pick 1 TIMES
the number of ways to arrange EEEE
= 4C1 * 4C1 * 4C1 * 4C1 * 4!/4! = 4*4*4*4 * 1

3 evens:
4 evens pick 1 AND
4 evens pick 1 AND
4 evens pick 1 AND
4 odds pick 1 TIMES
the number of ways to arrange EEEO
= 4C1 * 4C1 * 4C1 * 4C1 * 4!/3!1!= 4*4*4*4 * 4

2 evens:
4 evens pick 1 AND
4 evens pick 1 AND
4 odds pick 1 AND
4 odds pick 1 TIMES
the number of ways to arrange EEOO
= 4C1 * 4C1 * 4C1 * 4C1 * 4!/2!2! = 4*4*4*4 * 6

1 even:
4 evens pick 1 AND
4 odds pick 1 AND
4 odds pick 1 AND
4 odds pick 1 TIMES
the number of ways to arrange EOOO
= 4C1 * 4C1 * 4C1 * 4C1 * 4!/1!3! = 4*4*4*4 * 4


0 evens:
4 odds pick 1 AND
4 odds pick 1 AND
4 odds pick 1 AND
4 odds pick 1 TIMES
the number of ways to arrange OOOO
= 4C1 * 4C1 * 4C1 * 4C1 * 4!/4! = 4*4*4*4 * 1

****************************

# of evens: Events
0: 4*4*4*4*1
1: 4*4*4*4*4
2: 4*4*4*4*6
3: 4*4*4*4*4
4: 4*4*4*4*1
----------------------------
Total = 8*8*8*8 = 4*4*4*4*2*2*2*2 =4*4*4*4*16

****************************

Use the table info to answer any questions.
P(evens = 0) = 1/16
P(evens > 0) = (4+6+4+1)/16
etc.

rraggio wrote:
a) ¼
b) ½
c) ¾
d) 15/16
e) 1/16


ANS: D

Kudos [?]: 24 [0], given: 1

Current Student
User avatar
Joined: 18 Oct 2014
Posts: 903

Kudos [?]: 454 [0], given: 69

Location: United States
GMAT 1: 660 Q49 V31
GPA: 3.98
GMAT ToolKit User
Re: A Four digit safe code does not contain the digits 1 and 4.. [#permalink]

Show Tags

New post 26 May 2016, 07:55
rraggio wrote:
A four digit safe code does not contain the digits 1 and 4 at all. What is the probability that it has at least one even digit?

a) ¼
b) ½
c) ¾
d) 15/16
e) 1/16


Total available digits to make 4 digit code= 8 (excludes 1 and 4)

Probability of having at least one even digit= 1- probability of having all odd digits

Total ways to make 4 digit code= 8*8*8*8
Total ways of having only odd digits= 4*4*4*4
probability of having all odd digits= 4*4*4*4/8*8*8*8=1/16

Probability of having at least one even digit= 1- 1/16= 15/16

D is the answer
_________________

I welcome critical analysis of my post!! That will help me reach 700+

Kudos [?]: 454 [0], given: 69

Manager
Manager
User avatar
B
Status: IF YOU CAN DREAM IT, YOU CAN DO IT
Joined: 03 Jul 2017
Posts: 177

Kudos [?]: 8 [0], given: 14

Location: India
Concentration: Finance, International Business
Re: A Four digit safe code does not contain the digits 1 and 4.. [#permalink]

Show Tags

New post 09 Jul 2017, 17:28
The digits to be considered are 0,5,6,7,8,9 so the total is 6c4 =15 and having at least one even number is 4c1+4c2+4c3=14 Therefore the probability is 14/15. I know my approach is wrong . Can someone please tell me as to where am i going wrong ?

Kudos [?]: 8 [0], given: 14

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42597

Kudos [?]: 135562 [0], given: 12699

Re: A Four digit safe code does not contain the digits 1 and 4.. [#permalink]

Show Tags

New post 10 Jul 2017, 01:21
longhaul123 wrote:
The digits to be considered are 0,5,6,7,8,9 so the total is 6c4 =15 and having at least one even number is 4c1+4c2+4c3=14 Therefore the probability is 14/15. I know my approach is wrong . Can someone please tell me as to where am i going wrong ?


The question says that "...code does not contain the digits 1 and 4 at all", not "from 1 through 4". Meaning that we can use 2 and 3,
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135562 [0], given: 12699

Expert Post
1 KUDOS received
Target Test Prep Representative
User avatar
S
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 1940

Kudos [?]: 1017 [1], given: 3

Location: United States (CA)
Re: A Four digit safe code does not contain the digits 1 and 4.. [#permalink]

Show Tags

New post 12 Jul 2017, 16:01
1
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
rraggio wrote:
A four digit safe code does not contain the digits 1 and 4 at all. What is the probability that it has at least one even digit?

a) ¼
b) ½
c) ¾
d) 15/16
e) 1/16


We can use the following equation:

P(at least one even digit) = 1 - P(no even digits)

Since 1 and 4 cannot be used, we have 8 available digits (0, 2, 3, 5, 6, 7, 8, 9), and we see that 4 of those 8 digits are odd (3,5,7,9). Thus, P(no even digits) = 4/8 x 4/8 x 4/8 x 4/8 = (1/2)^4 = 1/16.

Thus, P(at least one even digit) = 1 - 1/16 = 15/16.

Answer: D
_________________

Scott Woodbury-Stewart
Founder and CEO

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Kudos [?]: 1017 [1], given: 3

Intern
Intern
avatar
B
Joined: 29 Jul 2009
Posts: 5

Kudos [?]: [0], given: 7

Re: A Four digit safe code does not contain the digits 1 and 4.. [#permalink]

Show Tags

New post 28 Nov 2017, 19:46
How can all the 4 digits be filled with 8 combination. If it has to be a 4 digit number and 1,4 are not allowed then first digit of 4 digit number can only be filled by 7 numbers ( excepting 1,4, 0) , so shouldn't it be :

7*8*8*8

What am i missing here ?

cabelk wrote:
rraggio wrote:
A four digit safe code

Permutation
(_)(_)(_)(_)

Note: A safe code can have 0 as the thousands digit; a 4-digit number cannot.

rraggio wrote:
does not contain the digits 1 and 4 at all.

Bag of 8 choices w/ replacement.

rraggio wrote:
What is the probability that it has at least one even digit?

"At least" means Probability Table. Create and work backwards.

****************************
# of evens: Events
0:
1:
2:
3:
4:
----------------------------
Total =
****************************

Total = Fill in Permutation above = 8P4 = (8)(8)(8)(8)

4 evens:
4 evens pick 1 AND
4 evens pick 1 AND
4 evens pick 1 AND
4 evens pick 1 TIMES
the number of ways to arrange EEEE
= 4C1 * 4C1 * 4C1 * 4C1 * 4!/4! = 4*4*4*4 * 1

3 evens:
4 evens pick 1 AND
4 evens pick 1 AND
4 evens pick 1 AND
4 odds pick 1 TIMES
the number of ways to arrange EEEO
= 4C1 * 4C1 * 4C1 * 4C1 * 4!/3!1!= 4*4*4*4 * 4

2 evens:
4 evens pick 1 AND
4 evens pick 1 AND
4 odds pick 1 AND
4 odds pick 1 TIMES
the number of ways to arrange EEOO
= 4C1 * 4C1 * 4C1 * 4C1 * 4!/2!2! = 4*4*4*4 * 6

1 even:
4 evens pick 1 AND
4 odds pick 1 AND
4 odds pick 1 AND
4 odds pick 1 TIMES
the number of ways to arrange EOOO
= 4C1 * 4C1 * 4C1 * 4C1 * 4!/1!3! = 4*4*4*4 * 4


0 evens:
4 odds pick 1 AND
4 odds pick 1 AND
4 odds pick 1 AND
4 odds pick 1 TIMES
the number of ways to arrange OOOO
= 4C1 * 4C1 * 4C1 * 4C1 * 4!/4! = 4*4*4*4 * 1

****************************

# of evens: Events
0: 4*4*4*4*1
1: 4*4*4*4*4
2: 4*4*4*4*6
3: 4*4*4*4*4
4: 4*4*4*4*1
----------------------------
Total = 8*8*8*8 = 4*4*4*4*2*2*2*2 =4*4*4*4*16

****************************

Use the table info to answer any questions.
P(evens = 0) = 1/16
P(evens > 0) = (4+6+4+1)/16
etc.

rraggio wrote:
a) ¼
b) ½
c) ¾
d) 15/16
e) 1/16


ANS: D

Kudos [?]: [0], given: 7

Re: A Four digit safe code does not contain the digits 1 and 4..   [#permalink] 28 Nov 2017, 19:46
Display posts from previous: Sort by

A Four digit safe code does not contain the digits 1 and 4..

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.