It is currently 20 Apr 2018, 15:21

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

As shown in figure, square ABCD has arc BPD centred at C and arc BQD

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

3 KUDOS received
SVP
SVP
User avatar
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1837
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)
As shown in figure, square ABCD has arc BPD centred at C and arc BQD [#permalink]

Show Tags

New post 10 Sep 2014, 02:21
3
This post received
KUDOS
7
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

71% (01:47) correct 29% (03:06) wrong based on 160 sessions

HideShow timer Statistics

As shown in figure, square ABCD has arc BPD centred at C and arc BQD centred at A. If AB = 4, the area of the shaded region is
Attachment:
square.png
square.png [ 10 KiB | Viewed 3573 times ]


A: \(16 - 4\pi\)

B: \(8 - 2\pi\)

C: \(8\pi - 16\)

D: \(4\pi - 8\)

E: \(2\pi - 4\)
[Reveal] Spoiler: OA

_________________

Kindly press "+1 Kudos" to appreciate :)

Expert Post
2 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 44588
Re: As shown in figure, square ABCD has arc BPD centred at C and arc BQD [#permalink]

Show Tags

New post 10 Sep 2014, 04:40
2
This post received
KUDOS
Expert's post
3
This post was
BOOKMARKED
PareshGmat wrote:
As shown in figure, square ABCD has arc BPD centred at C and arc BQD centred at A. If AB = 4, the area of the shaded region is
Image

A: \(16 - 4\pi\)

B: \(8 - 2\pi\)

C: \(8\pi - 16\)

D: \(4\pi - 8\)

E: \(2\pi - 4\)


First of all, notice that the radii of the circles = the side of the square = 4.

Look at the image below:
Attachment:
Untitled.png
Untitled.png [ 7.93 KiB | Viewed 3153 times ]
When we subtract the area of DBC, which is 1/4th of the circle, we get the area of the red portion --> red = \(4^2 - \frac{\pi{r^2}}{4}=16 - 4\pi\).

If we subtract twice of that from the area of the square, we get the area of the leaf shaped figure in the centre --> the area of the leaf = \(4^2-2*(16 - 4\pi)=8\pi-16\).

The area of the shaded region is 1/4th of the area of the leaf = \(\frac{8\pi-16}{4}=2\pi-4\).

Answer: E.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

1 KUDOS received
Intern
Intern
avatar
Joined: 17 Apr 2012
Posts: 16
Location: United States
WE: Information Technology (Computer Software)
GMAT ToolKit User
Re: As shown in figure, square ABCD has arc BPD centred at C and arc BQD [#permalink]

Show Tags

New post 10 Sep 2014, 06:40
1
This post received
KUDOS
Thanks Bunuel,

Another method of solving. Consider the arc BPD with center at C. It is 1/4th of circle with center at C and radius of BC that is side of the square - 4.
So the area of the BPDC is 1/4 * pi * 4* 4 = 4*pi.

in the arc, BCD is right angle triangle at C, base and height will be side of the square.
Hence area of triangle BCD will be 1/2 * 4 * 4 = 8.

difference between these two area will give Arc BPD with base of BD = 4pi - 8.
half of it will be 2pi - 4. which will be area of the shaded region.
Manager
Manager
avatar
Joined: 21 Sep 2012
Posts: 218
Location: United States
Concentration: Finance, Economics
Schools: CBS '17
GPA: 4
WE: General Management (Consumer Products)
Re: As shown in figure, square ABCD has arc BPD centred at C and arc BQD [#permalink]

Show Tags

New post 10 Sep 2014, 07:42
Bunuel wrote:
PareshGmat wrote:
As shown in figure, square ABCD has arc BPD centred at C and arc BQD centred at A. If AB = 4, the area of the shaded region is
Image

A: \(16 - 4\pi\)

B: \(8 - 2\pi\)

C: \(8\pi - 16\)

D: \(4\pi - 8\)

E: \(2\pi - 4\)


First of all, notice that the radii of the circles = the side of the square = 4.

Look at the image below:
Attachment:
Untitled.png
When we subtract the area of DBC, which is 1/4th of the circle, we get the area of the red portion --> red = \(4^2 - \frac{\pi{r^2}}{4}=16 - 4\pi\).

If we subtract twice of that from the area of the square, we get the area of the leaf shaped figure in the centre --> the area of the leaf = \(4^2-2*(16 - 4\pi)=8\pi-16\).

The area of the shaded region is 1/4th of the area of the leaf = \(\frac{8\pi-16}{4}=2\pi-4\).

Answer: E.

Hope it's clear.


Hi Bunuel,

Can you please explain below part :-
First of all, notice that the radii of the circles = the side of the square = 4.
Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 44588
Re: As shown in figure, square ABCD has arc BPD centred at C and arc BQD [#permalink]

Show Tags

New post 10 Sep 2014, 07:47
1
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
desaichinmay22 wrote:
Bunuel wrote:
PareshGmat wrote:
As shown in figure, square ABCD has arc BPD centred at C and arc BQD centred at A. If AB = 4, the area of the shaded region is
Image

A: \(16 - 4\pi\)

B: \(8 - 2\pi\)

C: \(8\pi - 16\)

D: \(4\pi - 8\)

E: \(2\pi - 4\)


First of all, notice that the radii of the circles = the side of the square = 4.

Look at the image below:
Attachment:
The attachment Untitled.png is no longer available
When we subtract the area of DBC, which is 1/4th of the circle, we get the area of the red portion --> red = \(4^2 - \frac{\pi{r^2}}{4}=16 - 4\pi\).

If we subtract twice of that from the area of the square, we get the area of the leaf shaped figure in the centre --> the area of the leaf = \(4^2-2*(16 - 4\pi)=8\pi-16\).

The area of the shaded region is 1/4th of the area of the leaf = \(\frac{8\pi-16}{4}=2\pi-4\).

Answer: E.

Hope it's clear.


Hi Bunuel,

Can you please explain below part :-
First of all, notice that the radii of the circles = the side of the square = 4.


We are told that arc BPD centred at C:
Attachment:
Untitled.png
Untitled.png [ 10.44 KiB | Viewed 3106 times ]

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
Joined: 21 Sep 2012
Posts: 218
Location: United States
Concentration: Finance, Economics
Schools: CBS '17
GPA: 4
WE: General Management (Consumer Products)
Re: As shown in figure, square ABCD has arc BPD centred at C and arc BQD [#permalink]

Show Tags

New post 10 Sep 2014, 08:09
Hi Bunuel,

Can you please explain below part :-
First of all, notice that the radii of the circles = the side of the square = 4.[/quote]

We are told that arc BPD centred at C:
Attachment:
Untitled.png
[/quote]

As usual grateful to you for the help. Thanks a ton.
SVP
SVP
User avatar
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1837
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)
Re: As shown in figure, square ABCD has arc BPD centred at C and arc BQD [#permalink]

Show Tags

New post 25 Sep 2014, 21:18
Refer diagram below:

Let the area of the required shaded region = x

Area of all other regions shaded would be as shown in the diagram as area of the full square = 16

Attachment:
square.png
square.png [ 10.81 KiB | Viewed 2862 times ]

Consider any Quarter circle

\(Its Area = \frac{\pi4^2}{4} = 4x + 8 - 2x\)

\(x = 2\pi - 4\)

Answer = E
_________________

Kindly press "+1 Kudos" to appreciate :)

Intern
Intern
avatar
Joined: 28 Dec 2015
Posts: 41
Re: As shown in figure, square ABCD has arc BPD centred at C and arc BQD [#permalink]

Show Tags

New post 08 Jul 2016, 03:04
I solved it this way:

Area of square=16

Area under one quarter arc=90/360*pie*4^2=4pie.

Subtract it from the Area of square,we will get Area of remaining portion(DCBQD)=16-4pie

Similarly,Area under the second quarter arc=4 pie.

Subtract it from the Area of square,you will get the remaining Area(ABPDA)=16-4pie

Add both of these areas=32-8pie.

Now that you get the areas of these two portions,subtract it from the Area of square=16-(32-8pie)=8pie-16

So,area of just 1/4th section=1/4*8pie-16=2pie-4
Intern
Intern
avatar
Joined: 15 Jul 2013
Posts: 2
As shown in figure, square ABCD has arc BPD centred at C and arc BQD [#permalink]

Show Tags

New post 08 Jul 2016, 04:10
let the point of intersection of diagonals be O. Now the area of the shaded region is (area of sector BPC - area of triangle BOC)

area of sector = [pi/4][/2*p] * pi * r2 = 2pi
area of triangle BOC = 16/4 = 4

result : 2pi - 4
Option E
Current Student
User avatar
Joined: 18 Oct 2014
Posts: 886
Location: United States
GMAT 1: 660 Q49 V31
GPA: 3.98
GMAT ToolKit User
Re: As shown in figure, square ABCD has arc BPD centred at C and arc BQD [#permalink]

Show Tags

New post 08 Jul 2016, 05:18
PareshGmat wrote:
As shown in figure, square ABCD has arc BPD centred at C and arc BQD centred at A. If AB = 4, the area of the shaded region is
Attachment:
square.png


A: \(16 - 4\pi\)

B: \(8 - 2\pi\)

C: \(8\pi - 16\)

D: \(4\pi - 8\)

E: \(2\pi - 4\)


That is how I solved it.

Area of Square= 4*4 = 16

Area of half square= 8

Area of one arc = 90/360 * pi *4*4= 4pi

area of shaded region= 4pi-8/2= 2pi-4

E is the answer
_________________

I welcome critical analysis of my post!! That will help me reach 700+

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 6641
Premium Member
Re: As shown in figure, square ABCD has arc BPD centred at C and arc BQD [#permalink]

Show Tags

New post 07 Apr 2018, 08:28
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Re: As shown in figure, square ABCD has arc BPD centred at C and arc BQD   [#permalink] 07 Apr 2018, 08:28
Display posts from previous: Sort by

As shown in figure, square ABCD has arc BPD centred at C and arc BQD

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


cron

GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.