Last visit was: 27 Mar 2025, 12:05 It is currently 27 Mar 2025, 12:05
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
prathns
Joined: 01 Aug 2009
Last visit: 23 Nov 2012
Posts: 18
Own Kudos:
738
 [694]
Given Kudos: 3
Posts: 18
Kudos: 738
 [694]
42
Kudos
Add Kudos
652
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 27 March 2025
Posts: 100,114
Own Kudos:
Given Kudos: 92,732
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 100,114
Kudos: 711,369
 [491]
164
Kudos
Add Kudos
326
Bookmarks
Bookmark this Post
User avatar
mrblack
Joined: 27 Apr 2008
Last visit: 06 May 2013
Posts: 136
Own Kudos:
227
 [108]
Given Kudos: 1
Posts: 136
Kudos: 227
 [108]
61
Kudos
Add Kudos
47
Bookmarks
Bookmark this Post
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 27 Mar 2025
Posts: 15,835
Own Kudos:
72,324
 [93]
Given Kudos: 461
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 15,835
Kudos: 72,324
 [93]
68
Kudos
Add Kudos
25
Bookmarks
Bookmark this Post
gpkk
For every integer k from 1 to 10 inclusive the kth term of a certain sequence is given by (-1)^(k+1)*(1/2^k). If T is the sum of the first 10 terms in the sequence then T is
1) greater than 2
2)between 1 & 2
3) between 0.5 and 1
4)between 0.25 and 0.5
5)less than 0.25

Could someone please provide a solution to this problem ?

To get a hang of what the question is asking, put values for k right away. Say, k = 1, k = 2 etc
You get terms such as (1/2) when k = 1, (-1/4) when k = 2 etc

T = 1/2 - 1/4 + 1/8 - 1/16 +.... + 1/512 - 1/1024 (Sum of first 10 terms)

Of course GMAT doesn't expect us to calculate but figure out the answer using some shrewdness.

We have 10 terms. If we couple them up, two terms each, we get 5 groups:
T = (1/2 - 1/4) + (1/8 - 1/16) ...+ (1/512 - 1/1024)

Tell me, can we say that each group is positive? From a larger number, you are subtracting a smaller number in each bracket. e.g. 1/2 is larger than 1/4 so 1/2 - 1/4 = 1/4 i.e. a positive number
1/8 - 1/16 = 1/16, again a positive number.

We will get something similar to this: T = 1/4 + 1/16 +.... (all positives)
Definitely this sum, T, is greater than 1/4 i.e. 0.25

Now, let's group them in another way.

T = 1/2 + (- 1/4 + 1/8) + (- 1/16 + 1/32) ... - 1/1024
You will be able to make 4 groups since you left the first term out. The last term will also be left out.
Each bracket will give you a negative term -1/4 + 1/8 = -1/8 etc
Since the first term is 1/2 i.e. 0.5, we can say that the sum T will be less than 0.5 since all the other terms are negative.

So the sum, T, must be more than 0.25 but less than 0.5

Answer (D)

Check the basics of sequences here: https://anaprep.com/algebra-introducing-sequences/
and another tricky question here: https://anaprep.com/algebra-a-difficult ... sequences/
User avatar
jpr200012
Joined: 30 May 2010
Last visit: 10 Oct 2011
Posts: 137
Own Kudos:
808
 [71]
Given Kudos: 32
Posts: 137
Kudos: 808
 [71]
48
Kudos
Add Kudos
23
Bookmarks
Bookmark this Post
Initially, I thought about calculating every term. This is almost always the wrong approach. It is more of a number properties problem than sequences.

For the first term, it alternates between positive and negative. For even k, it is positive 1 * \(1/2^k\) and negative 1 for odd k.

The first term is \(1 * 1/2 = 1/2\)

The second term is \(-1 * 1/4 = -1/4\)

\(1/2 - 1/4 = 1/4\)

The third term is \(1 * 1/8 = 1/8\)

\(1/4 + 1/8 = 3/8\)

Looking at the answer choices, you don't need to continue. Since the denominator is increasing exponentially, the terms added and subtracted are becoming closer to 0. From the first term, we know we will never go above \(1/2\). After subtracting the second term, we know we will never go below \(1/4\).
User avatar
LGOdream
Joined: 02 Jun 2011
Last visit: 28 May 2022
Posts: 31
Own Kudos:
288
 [51]
Given Kudos: 10
Status:pursuing a dream
Schools:MIT Sloan (LGO)
Posts: 31
Kudos: 288
 [51]
45
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
Hello!

I was just doing this problem and though I would add some "graphic" approach in case it is useful for someone as it has been for me.

You can easily draw a graph of the first points on any series to see if they follow a regular pattern. This one specifically is extremely easy to catch as you draw 3+ points, something like this:
Attachments

GP.jpg
GP.jpg [ 18.77 KiB | Viewed 218971 times ]

User avatar
IanStewart
User avatar
GMAT Tutor
Joined: 24 Jun 2008
Last visit: 27 Mar 2025
Posts: 4,132
Own Kudos:
10,255
 [38]
Given Kudos: 97
 Q51  V47
Expert
Expert reply
Posts: 4,132
Kudos: 10,255
 [38]
27
Kudos
Add Kudos
11
Bookmarks
Bookmark this Post
A few things here:

* I've never seen a real GMAT question that requires one to know any geometric sequence formulas. Of course there are questions where you might use such formulas, but there will always be a different approach available;

* In any sequence question which gives an expression for each term, you'll always want to write down the first few terms using the given expression to work out what the sequence looks like. Here we have:

\(\frac{1}{2}, \frac{-1}{4}, \frac{1}{8}, \frac{-1}{16}, \frac{1}{32}, \frac{-1}{64}, \frac{1}{128}, \frac{-1}{256}, \frac{1}{512}, \frac{-1}{1024}\)

* Now, adding all of these fractions together would take a long time to do. The GMAT *never* requires you to perform any crazy calculations, so there must be a different way to answer the question. Notice the answer choices are only estimates, so we only need to estimate the sum of the first 10 terms. When we want to estimate the value of a sum, we ignore terms that make only a tiny contribution to the sum. The last few terms in our sequence are minuscule compared to the first few, so to get a good estimate, we can completely ignore them; adding, say, the first four terms will give a perfectly good approximation of the sum here (you get 5/16, which is enough to choose the right answer).

* The sequence in this question is what is known as an 'alternating sequence' -- that is, the terms alternate between positive and negative values. When adding an alternating sequence, you most often want to add your terms in pairs first, grouping one positive and one negative (add the 1st and 2nd term, the 3rd and 4th, and so on). One doesn't need to do this for this question, but it does make the answer a bit easier to see - we'd find our sum is

\(\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \frac{1}{256} + \frac{1}{1024}\)

from which you can instantly see the sum is greater than 1/4. Since every term here is tiny after the first two, the sum is certainly less than 1/2.
User avatar
AbhayPrasanna
Joined: 04 May 2010
Last visit: 05 Jan 2025
Posts: 61
Own Kudos:
344
 [29]
Given Kudos: 7
 Q51  V44
GPA: 3.8
WE 1: 2 yrs - Oilfield Service
Products:
Posts: 61
Kudos: 344
 [29]
22
Kudos
Add Kudos
7
Bookmarks
Bookmark this Post
Kth term: A(k) = (-1) ^ (k+1) * 1 / 2^k

T is the sum of the first 10 terms of this sequence.

A(1) = (-1)^(1+1)*1/2^1 = 1/2

A(2) = (-1)^(1+2)*1/2^2 = -1/4

You can see that for odd k it would be positive values of \(1/2^k\) and for even k it would be negative values of \(1/2^k\)

So it's like this:

\(T = \frac{1}{2} - \frac{1}{4} + \frac{1}{18} - \frac{1}{16}+ ...\)

Now look for a pattern in the sums of various number of terms.

i.e. Sum of first 2 terms = 1/2 - 1/4 = 1/4
Sum of first 3 terms = 1/4 + 1/8 = 3/8
Sum of first 4 terms = 3/8 - 1/16 = 5/16
Sum of first 5 terms = 5/16 + 1/32 = 11/32
and so on...

You can see that all these sums are between 1/4 and 1/2.

On the GMAT when you have tested such a question for about half the terms and you have established a pattern you can safely assume it will continue. This is because this series is analogous to how the GMAT itself adapts the difficulty of its questions based on your answers. It sort of zigzags in a diminishing pattern. So as you increase k, you will be varying only slightly around a sort of ultimate stagnant value at infinity which you could determine as \(\frac{a}{(1 - r)}\) i.e. the sum of an infinite Geometric Progression with first term a and common ratio r.

Here we have first term 1/2 and common ratio -1/2

=> Infinite sum = \(\frac{1}{2*(1 - (-1/2))}= \frac{1}{2*1.5} = \frac{1}{3}\)

With a large number of terms such as 10 terms, your series sum would actual TEND to stagnate around this infinite sum.

Pick D
User avatar
Marcab
Joined: 03 Feb 2011
Last visit: 22 Jan 2021
Posts: 853
Own Kudos:
4,722
 [26]
Given Kudos: 221
Status:Retaking after 7 years
Location: United States (NY)
Concentration: Finance, Economics
GMAT 1: 720 Q49 V39
GPA: 3.75
GMAT 1: 720 Q49 V39
Posts: 853
Kudos: 4,722
 [26]
25
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
an alternative:
The series can be written as \(1/2 - 1/4 + 1/8 - 1/16.............1/1024\)
Since the terms beyond \(1/16\) are too small, so I am not considering those terms.
Now on adding \(1/2 - 1/4 +1/8 - 1/16\), we get \(5/16\) which is slightly more than \(4/16\). Hence its value would be around `\(0.3\).

The answer choice which includes this number is D.
User avatar
TehJay
Joined: 06 Aug 2010
Last visit: 19 Jun 2013
Posts: 123
Own Kudos:
761
 [24]
Given Kudos: 5
Location: Boston
 Q50  V42
Posts: 123
Kudos: 761
 [24]
16
Kudos
Add Kudos
8
Bookmarks
Bookmark this Post
prathns
For every integer k from 1 to 10, inclusive, the kth term of a certain sequence is given by (-1)^(k+1) *(1/2^k). If T is the sum of the first 10 terms in the sequence then T is

a)greater than 2
b)between 1 and 2
c)between 1/2 and 1
d)between 1/4 and 1/2
e)less than 1/4.

I have no clue what info has been given and how to use it to derive T.

Kindly post a detailed explanation.

Thanks.
Prath.

When doing sequence problems, it usually helps to look at at least the first few terms. So in this case:

\(a_k = (-1)^{k+1} * \frac{1}{2^k}\)

This gives us:

\(a_1 = \frac{1}{2}\)
\(a_2 = -\frac{1}{4}\)
\(a_3 = \frac{1}{8}\)
\(a_4 = -\frac{1}{16}\)

We can stop there. The first, and largest, term is 1/2, and we then subtract 1/4. We will then add and subtract fractions that will continue to get smaller and smaller. So we can immediately eliminate A, B, and C, since the sum cannot possibly be greater than 1/2. Now we're left with D and E. Note that the sum of the first two terms is 1/4. Then you add another 1/8 and subtract 1/16. This pattern will continue all the way through the tenth term, and you should be able to see that there's no way this sum will become less than 1/4. So the answer is D.
General Discussion
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 27 Mar 2025
Posts: 15,835
Own Kudos:
72,324
 [8]
Given Kudos: 461
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 15,835
Kudos: 72,324
 [8]
5
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
prathns
For every integer k from 1 to 10, inclusive, the kth term of a certain sequence is given by (-1)^(k+1) *(1/2^k). If T is the sum of the first 10 terms in the sequence then T is

a)greater than 2
b)between 1 and 2
c)between 1/2 and 1
d)between 1/4 and 1/2
e)less than 1/4.

I have no clue what info has been given and how to use it to derive T.

Kindly post a detailed explanation.

Thanks.
Prath.

Using some keen observation, you can quickly arrive at the answer...
Terms will be: \(\frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} + \frac{1}{32} - ... - \frac{1}{1024}\)
For every pair of values:
\(\frac{1}{2} - \frac{1}{4} = \frac{1}{4}\)

\(\frac{1}{8} - \frac{1}{16} = \frac{1}{16}\)
etc...

So this series is actually just
\(\frac{1}{4} + \frac{1}{16} + ... + \frac{1}{1024}\)

So the sum is definitely greater than 1/4.
When you add an infinite GP with 1/16 as first term and 1/4 as common ratio, the sum will be \(\frac{\frac{1}{16}}{1-\frac{1}{4}} = 1/12\). Here, the sum of terms 1/16 + 1/64 + ... 1/1024 is definitely less than 1/12. Hence the sum is definitely less than 1/2. Answer is (D).
avatar
IronHulkMan
Joined: 21 Dec 2011
Last visit: 19 Sep 2020
Posts: 14
Own Kudos:
18
 [8]
Given Kudos: 7
Posts: 14
Kudos: 18
 [8]
8
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I did it the following way.

K=(1/2)-(1/4)+(1/8)-(1/16)+..... ----- 1

Multiply K by 2

2K=1-(1/2)+(1/4)-.....-(1/512) ------- 2

Adding 1 and 2

3K = 1 -(1/1024)
K= (1/3) -{1/(3*1024)}

Now 1/(3*1024) will be very small
So K= 1/3 = .3333

Ans Option D
User avatar
kinjiGC
Joined: 03 Feb 2013
Last visit: 27 Jul 2024
Posts: 791
Own Kudos:
2,682
 [8]
Given Kudos: 567
Location: India
Concentration: Operations, Strategy
GMAT 1: 760 Q49 V44
GPA: 3.88
WE:Engineering (Computer Software)
Products:
GMAT 1: 760 Q49 V44
Posts: 791
Kudos: 2,682
 [8]
7
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
This is GP.

The terms will be 1/2-1/4+1/8-....

Common ratio is (-1/4)/(1/2) = -1/2

So the sum of terms = 1/2 [1- (-1/2)^10]/(1-(-1/2)) = 1/2 *[1-1/1024]/3/2 = 1023/(1024*3) close to 1/3 so Option D
avatar
iyera211
Joined: 16 Aug 2015
Last visit: 27 Jul 2017
Posts: 7
Own Kudos:
9
 [6]
Given Kudos: 107
Posts: 7
Kudos: 9
 [6]
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
Bunuel
For every integer k from 1 to 10, inclusive the "k"th term of a certain sequence is given by \((-1)^{(k+1)}*(\frac{1}{2^k})\) if T is the sum of the first 10 terms in the sequence, then T is
A. Greater than 2
B. Between 1 and 2
C. Between 1/2 and 1
D. Between 1/4 and 1/2
E. Less than 1/4

First of all we see that there is set of 10 numbers and every even term is negative.

Second it's not hard to get this numbers: \(\frac{1}{2}\), \(-\frac{1}{4}\), \(\frac{1}{8}\), \(-\frac{1}{16}\), \(\frac{1}{32}\)... enough for calculations, we see pattern now.

And now the main part: adding them up is quite a job, after calculations you'll get \(\frac{341}{1024}\). You can add them up by pairs but it's also time consuming. Once we've done it we can conclude that it's more than \(\frac{1}{4}\) and less than \(\frac{1}{2}\), so answer is D.

BUT there is shortcut:

Sequence \(\frac{1}{2}\), \(-\frac{1}{4}\), \(\frac{1}{8}\), \(-\frac{1}{16}\), \(\frac{1}{32}\)... represents geometric progression with first term \(\frac{1}{2}\) and the common ratio of \(-\frac{1}{2}\).

Now, the sum of infinite geometric progression with common ratio \(|r|<1\), is \(sum=\frac{b}{1-r}\), where \(b\) is the first term.

So, if the sequence were infinite then the sum would be: \(\frac{\frac{1}{2}}{1-(-\frac{1}{2})}=\frac{1}{3}\)

This means that no matter how many number (terms) we have their sum will never be more then \(\frac{1}{3}\) (A, B and C are out). Also this means that the sum of our sequence is very close to \(\frac{1}{3}\) and for sure more than \(\frac{1}{4}\) (E out). So the answer is D.

Answer: D.

Other solutions at: https://gmatclub.com/forum/sequence-can- ... ml#p668661

Bunuel, how come the ratio here is -1/2, and not 1/2? If there are alternating signs in a sequence, is the "ratio" always the negative value? thanks
User avatar
krishp84
Joined: 16 Jan 2011
Last visit: 21 Nov 2015
Posts: 124
Own Kudos:
227
 [5]
Given Kudos: 62
Status:On...
Posts: 124
Kudos: 227
 [5]
5
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I liked Graphical approach is a good one.
BUT - felt there is no need of any calculations
T =
+(1/2 + 1/2^3 + 1/2^5 + 1/2^7 +1/2^9)
-(1/2^2 + 1/2^4 + 1/2^6 + 1/2^8 + 1/2^10)

Subtract the top and bottom
T = 1/4 + 1/2^4 + 1/2^6 + 1/2^8 + 1/2^10
Now I know T is greater than 1/4 , but if sum of the remaining is smaller than 1/4, then it will definitely be between 1/4 and 1/2
T = 1/4 + 1/4(1/2^2 + 1/2^4 + 1/2^6 + 1/2^8)
So sum of the remaining is smaller than 1/4, so ans. is between 1/4 and 1/2
OA -D
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 27 Mar 2025
Posts: 20,414
Own Kudos:
25,452
 [4]
Given Kudos: 292
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 20,414
Kudos: 25,452
 [4]
3
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
prathns
For every integer k from 1 to 10, inclusive the "k"th term of a certain sequence is given by \((-1)^{(k+1)}*(\frac{1}{2^k})\). If T is the sum of the first 10 terms in the sequence, then T is

A. Greater than 2
B. Between 1 and 2
C. Between 1/2 and 1
D. Between 1/4 and 1/2
E. Less than 1/4

Solution:
We are given that for every integer k from 1 to 10, inclusive, the kth term of a certain sequence is given by (-1)^(k+1) x (1/2^k). We must determine the sum of the first 10 terms in the sequence. Before calculating the sum, we should recognize that the answer choices are provided as ranges of values, rather than as exact values. Thus, we might not need to calculate the total of the 10 terms to determine an answer. Perhaps we can uncover a pattern to help us find the answer. Let’s start by listing the first four terms.
k = 1:
(-1)^(1+1) x (1/2^1)
(-1)^2 x 1/2
1 x 1/2 = 1/2
k = 2:
(-1)^(2+1) x (1/2^2)
(-1)^3 x 1/4
-1 x 1/4 = -1/4
k = 3:
(-1)^(3+1) x (1/2^3)
(-1)^4 x 1/8
1 x 1/8 = 1/8
k = 4:
(-1)^(4+1) x (1/2^4)
(-1)^5 x 1/16
-1 x 1/16 = -1/16
Recall that we are trying to estimate the value of T = 1/2 + (-1/4) + 1/8 + (-1/16) + … until we have 10 terms. In other words, T = 1/2 – 1/4 + 1/8 – 1/16 + … until there are 10 terms.
We should notice that the absolute values of the terms are getting smaller:
|1/2|>|-1/4|>|1/8|>|-1/16|.
Notice that starting from the first term of 1/2, we are subtracting something less than 1/2 (notice that 1/4 < 1/2) but then adding back something even less (notice 1/8 < 1/4), and the process continues. Thus, because ½ and -1/4 are the largest term and the smallest term, respectively, in our set, the sum will never fall below ¼ or exceed ½.
Thus, we conclude that T is greater than 1/4 but less than 1/2.

Answer: D
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 27 March 2025
Posts: 100,114
Own Kudos:
711,369
 [3]
Given Kudos: 92,732
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 100,114
Kudos: 711,369
 [3]
1
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
Stiv
\(\frac{first \ term}{1-constant}\) Is this formula reversed when we have an increase by 0<constant<1? Does it look like this \(\frac{first \ term}{1+constant}\)?

The sum of infinite geometric progression with common ratio \(|r|<1\), is \(sum=\frac{b}{1-r}\), where \(b\) is the first term.
User avatar
rohitesh1989
Joined: 24 Feb 2014
Last visit: 17 Apr 2016
Posts: 2
Own Kudos:
4
 [3]
Given Kudos: 21
Schools: ISB
Products:
Schools: ISB
Posts: 2
Kudos: 4
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
https://tinypic.com/r/2lvk4z5/8

Please check a simpler solution to the above problem in the above image link.

Cheers.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 27 Mar 2025
Posts: 15,835
Own Kudos:
72,324
 [3]
Given Kudos: 461
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 15,835
Kudos: 72,324
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
healthjunkie
I've never seen this term "geometric progression" in my studies thus far - is there a good overview of them somewhere and potential questions that might be asked in reference to them? Thanks!


Here is a post that discusses Geometric progressions (GP):
https://anaprep.com/algebra-benefits-of ... -concepts/
User avatar
Zarrolou
Joined: 02 Sep 2012
Last visit: 11 Dec 2013
Posts: 850
Own Kudos:
5,034
 [2]
Given Kudos: 219
Status:Far, far away!
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Posts: 850
Kudos: 5,034
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
kabilank87
For every integers K from 1 to 10 inclusive, the K th term of a certail sequence is given by [(-1)^(K+1)](1 / (2^K). What is the sum of first 10 terms of the sequence ?

a. Greater than 2
b. Between 1 and 2
c. Between 1/2 and 1
d.Between 1/4 and 1/2
e.Less than 1/4

I answer this question in my second attempt, but it takes a lot of times around 4 minutes. Please explain a shorter way to do this ?

Here we need to find a pattern
\(\frac{1}{2},-\frac{1}{4},\frac{1}{8},...\) as you see the sign changes every term.
The first and bigger is 0,5 and then we subtract and sum smaller and smaller terms.
We can eliminate any option that gives us a upper limit greater than 1/2.
We are down to D and E. Is the sum less than 1/4?
Take the sum of pair of terms : the first 2 give us \(\frac{1}{4}\), the second pair is \(\frac{1}{8}-\frac{1}{16}\) positive so we add value to \(\frac{1}{4}\), so the sum will be greater.(this is true also for the next pairs, so we add to \(\frac{1}{4}\) a positive value for each pair)
D

Hope its clear, let me know
 1   2   3   
Moderators:
Math Expert
100113 posts
PS Forum Moderator
518 posts