gpkk wrote:
For every integer k from 1 to 10 inclusive the kth term of a certain sequence is given by (-1)^(k+1)*(1/2^k). If T is the sum of the first 10 terms in the sequence then T is
1) greater than 2
2)between 1 & 2
3) between 0.5 and 1
4)between 0.25 and 0.5
5)less than 0.25
Could someone please provide a solution to this problem ?
To get a hang of what the question is asking, put values for k right away. Say, k = 1, k = 2 etc
You get terms such as (1/2) when k = 1, (-1/4) when k = 2 etc
T = 1/2 - 1/4 + 1/8 - 1/16 +.... + 1/512 - 1/1024 (Sum of first 10 terms)
Of course GMAT doesn't expect us to calculate but figure out the answer using some shrewdness.
We have 10 terms. If we couple them up, two terms each, we get 5 groups:
T = (1/2 - 1/4) + (1/8 - 1/16) ...+ (1/512 - 1/1024)
Tell me, can we say that each group is positive? From a larger number, you are subtracting a smaller number in each bracket. e.g. 1/2 is larger than 1/4 so 1/2 - 1/4 = 1/4 i.e. a positive number
1/8 - 1/16 = 1/16, again a positive number.
We will get something similar to this: T = 1/4 + 1/16 +.... (all positives)
Definitely this sum, T, is greater than 1/4 i.e. 0.25
Now, let's group them in another way.
T = 1/2 + (- 1/4 + 1/8) + (- 1/16 + 1/32) ... - 1/1024
You will be able to make 4 groups since you left the first term out. The last term will also be left out.
Each bracket will give you a negative term -1/4 + 1/8 = -1/8 etc
Since the first term is 1/2 i.e. 0.5, we can say that the sum T will be less than 0.5 since all the other terms are negative.
So the sum, T, must be more than 0.25 but less than 0.5
Answer (D)
_________________
Karishma
GMAT Instructor at Angles and Arguments
https://anglesandarguments.com/
For Individual Study Modules, check Study Modules >
For Private Tutoring, check Private Tutoring >