Last visit was: 17 May 2025, 18:57 It is currently 17 May 2025, 18:57
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Zarrolou
Joined: 02 Sep 2012
Last visit: 11 Dec 2013
Posts: 848
Own Kudos:
5,051
 [2]
Given Kudos: 219
Status:Far, far away!
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Posts: 848
Kudos: 5,051
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 17 May 2025
Posts: 15,969
Own Kudos:
73,162
 [1]
Given Kudos: 468
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 15,969
Kudos: 73,162
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avatar
IronHulkMan
Joined: 21 Dec 2011
Last visit: 19 Sep 2020
Posts: 14
Own Kudos:
18
 [8]
Given Kudos: 7
Posts: 14
Kudos: 18
 [8]
8
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
kinjiGC
Joined: 03 Feb 2013
Last visit: 27 Jul 2024
Posts: 791
Own Kudos:
2,690
 [8]
Given Kudos: 567
Location: India
Concentration: Operations, Strategy
GMAT 1: 760 Q49 V44
GPA: 3.88
WE:Engineering (Computer Software)
Products:
GMAT 1: 760 Q49 V44
Posts: 791
Kudos: 2,690
 [8]
7
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
This is GP.

The terms will be 1/2-1/4+1/8-....

Common ratio is (-1/4)/(1/2) = -1/2

So the sum of terms = 1/2 [1- (-1/2)^10]/(1-(-1/2)) = 1/2 *[1-1/1024]/3/2 = 1023/(1024*3) close to 1/3 so Option D
User avatar
rohitesh1989
Joined: 24 Feb 2014
Last visit: 17 Apr 2016
Posts: 2
Own Kudos:
4
 [3]
Given Kudos: 21
Schools: ISB
Products:
Schools: ISB
Posts: 2
Kudos: 4
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
https://tinypic.com/r/2lvk4z5/8

Please check a simpler solution to the above problem in the above image link.

Cheers.
User avatar
vietnammba
Joined: 25 Jun 2014
Last visit: 27 Jan 2015
Posts: 32
Own Kudos:
Given Kudos: 187
Posts: 32
Kudos: 67
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
For every integer k from 1 to 10, inclusive the "k"th term of a certain sequence is given by \((-1)^{(k+1)}*(\frac{1}{2^k})\) if T is the sum of the first 10 terms in the sequence, then T is
A. Greater than 2
B. Between 1 and 2
C. Between 1/2 and 1
D. Between 1/4 and 1/2
E. Less than 1/4

First of all we see that there is set of 10 numbers and every even term is negative.

Second it's not hard to get this numbers: \(\frac{1}{2}\), \(-\frac{1}{4}\), \(\frac{1}{8}\), \(-\frac{1}{16}\), \(\frac{1}{32}\)... enough for calculations, we see pattern now.

And now the main part: adding them up is quite a job, after calculations you'll get \(\frac{341}{1024}\). You can add them up by pairs but it's also time consuming. Once we've done it we can conclude that it's more than \(\frac{1}{4}\) and less than \(\frac{1}{2}\), so answer is D.

BUT there is shortcut:

Sequence \(\frac{1}{2}\), \(-\frac{1}{4}\), \(\frac{1}{8}\), \(-\frac{1}{16}\), \(\frac{1}{32}\)... represents geometric progression with first term \(\frac{1}{2}\) and the common ratio of \(-\frac{1}{2}\).

Now, the sum of infinite geometric progression with common ratio |r|<1[/m], is \(sum=\frac{b}{1-r}\), where \(b\) is the first term.

So, if the sequence were infinite then the sum would be: \(\frac{\frac{1}{2}}{1-(-\frac{1}{2})}=\frac{1}{3}\)

This means that no matter how many number (terms) we have their sum will never be more then \(\frac{1}{3}\) (A, B and C are out). Also this means that the sum of our sequence is very close to \(\frac{1}{3}\) and for sure more than \(\frac{1}{4}\) (E out). So the answer is D.

Answer: D.

Alternative, if you use the geometric series formula.

S = \frac{a(1-r^n)}{1-r}

where a = first term, r = multiple factor, n = # of terms.

Hi Bunuel, how are these two formula different? Thank you.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 17 May 2025
Posts: 101,480
Own Kudos:
Given Kudos: 93,530
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 101,480
Kudos: 725,036
Kudos
Add Kudos
Bookmarks
Bookmark this Post
vietnammba
Bunuel
For every integer k from 1 to 10, inclusive the "k"th term of a certain sequence is given by \((-1)^{(k+1)}*(\frac{1}{2^k})\) if T is the sum of the first 10 terms in the sequence, then T is
A. Greater than 2
B. Between 1 and 2
C. Between 1/2 and 1
D. Between 1/4 and 1/2
E. Less than 1/4

First of all we see that there is set of 10 numbers and every even term is negative.

Second it's not hard to get this numbers: \(\frac{1}{2}\), \(-\frac{1}{4}\), \(\frac{1}{8}\), \(-\frac{1}{16}\), \(\frac{1}{32}\)... enough for calculations, we see pattern now.

And now the main part: adding them up is quite a job, after calculations you'll get \(\frac{341}{1024}\). You can add them up by pairs but it's also time consuming. Once we've done it we can conclude that it's more than \(\frac{1}{4}\) and less than \(\frac{1}{2}\), so answer is D.

BUT there is shortcut:

Sequence \(\frac{1}{2}\), \(-\frac{1}{4}\), \(\frac{1}{8}\), \(-\frac{1}{16}\), \(\frac{1}{32}\)... represents geometric progression with first term \(\frac{1}{2}\) and the common ratio of \(-\frac{1}{2}\).

Now, the sum of infinite geometric progression with common ratio |r|<1[/m], is \(sum=\frac{b}{1-r}\), where \(b\) is the first term.

So, if the sequence were infinite then the sum would be: \(\frac{\frac{1}{2}}{1-(-\frac{1}{2})}=\frac{1}{3}\)

This means that no matter how many number (terms) we have their sum will never be more then \(\frac{1}{3}\) (A, B and C are out). Also this means that the sum of our sequence is very close to \(\frac{1}{3}\) and for sure more than \(\frac{1}{4}\) (E out). So the answer is D.

Answer: D.

Alternative, if you use the geometric series formula.

S = \frac{a(1-r^n)}{1-r}

where a = first term, r = multiple factor, n = # of terms.

Hi Bunuel, how are these two formula different? Thank you.

The formula I used is for the sum of infinite geometric progression with common ratio |r|<1.
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,791
Own Kudos:
12,370
 [2]
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,791
Kudos: 12,370
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi All,

As complex as this question looks, it's got a great pattern-matching 'shortcut' built into it. When combined with the answer choices, you can avoid some of the calculations....

By plugging in the first few numbers (1, 2, 3, 4), you can see that a pattern emerges among the terms....

1st term = 1/2
2nd term = -1/4
3rd term = 1/8
4th term = -1/16

The terms follow a positive-negative-positive-negative pattern all the way to the 10th term and each term is the product of the prior term and 1/2. By "pairing up' the terms, another pattern emerges....

1/2 - 1/4 = 1/4

1/8 - 1/16 = 1/16

1/32 - 1/64 = 1/64

Etc.

The "pairs" get progressively smaller (notice how each is the product of the prior term and 1/4). This means that we're "starting with" 1/4 and adding progressively TINIER fractions to it. Since we're just adding 4 progressively smaller fractions to 1/4, this means that we're going to end up with a total that's just a LITTLE MORE than 1/4. Looking at the answer choices, there's only one answer that fits:

Final Answer:
GMAT assassins aren't born, they're made,
Rich
avatar
healthjunkie
Joined: 14 Oct 2013
Last visit: 01 Jun 2016
Posts: 37
Own Kudos:
Given Kudos: 120
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I've never seen this term "geometric progression" in my studies thus far - is there a good overview of them somewhere and potential questions that might be asked in reference to them? Thanks!
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 17 May 2025
Posts: 15,969
Own Kudos:
73,162
 [3]
Given Kudos: 468
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 15,969
Kudos: 73,162
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
healthjunkie
I've never seen this term "geometric progression" in my studies thus far - is there a good overview of them somewhere and potential questions that might be asked in reference to them? Thanks!


Here is a post that discusses Geometric progressions (GP):
https://anaprep.com/algebra-benefits-of ... -concepts/
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,791
Own Kudos:
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,791
Kudos: 12,370
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi healthjunkie,

Geometric progressions are rather rare on the GMAT (while you will see at least 1 sequence question on Test Day, it is not likely to be a Geometric sequence), so you shouldn't be putting too much effort into this concept just yet.

How are you performing on the Quant section overall? How about in the 'big' categories (Algebra, Arithmetic, Number Properties, DS, etc.)? That's where you're going to find the bulk of the points.

GMAT assassins aren't born, they're made,
Rich
avatar
vijaydoli
Joined: 16 Jan 2015
Last visit: 17 Sep 2015
Posts: 2
Given Kudos: 18
Posts: 2
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I used the same calculation as above, which will probably take little more than 2 minutes. Is there a simple version to solve this problem?
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,791
Own Kudos:
12,370
 [2]
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,791
Kudos: 12,370
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi vijaydoli,

This question comes up every so often in this Forum. There are a couple of different ways of thinking about this problem, but they all require a certain degree of "math."

Without too much effort, you can deduce what the sequence is:

+1/2, -1/4, +1/8, -1/16, etc.

The "key" to solving this question quickly is to think about the terms in "sets of 2"…

1/2 - 1/4 = 1/4

Since the first term in each "set of 2" is greater than the second (negative) term, we now know that each set of 2 will be positive.

1/8 - 1/16 = 1/16

Now we know that each additional set of 2 will be significantly smaller than the prior set of 2.

1/4....1/16....1/64....etc.

Without doing all of the calculations, we know….
We have 1/4 and we'll be adding tinier and tinier fractions to it. Since there are only 10 terms in the sequence, there are only 5 sets of 2, so we won't be adding much to 1/4. Based on the answer choices, only one answer makes any sense…

Final Answer:
GMAT assassins aren't born, they're made,
Rich
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 17 May 2025
Posts: 15,969
Own Kudos:
73,162
 [2]
Given Kudos: 468
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 15,969
Kudos: 73,162
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasPrepKarishma
prathns
For every integer k from 1 to 10, inclusive, the kth term of a certain sequence is given by (-1)^(k+1) *(1/2^k). If T is the sum of the first 10 terms in the sequence then T is

a)greater than 2
b)between 1 and 2
c)between 1/2 and 1
d)between 1/4 and 1/2
e)less than 1/4.

I have no clue what info has been given and how to use it to derive T.

Kindly post a detailed explanation.

Thanks.
Prath.

Using some keen observation, you can quickly arrive at the answer...
Terms will be: \(\frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} + \frac{1}{32} - ... - \frac{1}{1024}\)
For every pair of values:
\(\frac{1}{2} - \frac{1}{4} = \frac{1}{4}\)

\(\frac{1}{8} - \frac{1}{16} = \frac{1}{16}\)
etc...

So this series is actually just
\(\frac{1}{4} + \frac{1}{16} + ... + \frac{1}{1024}\)

So the sum is definitely greater than 1/4.
When you add an infinite GP with 1/16 as first term and 1/4 as common ratio, the sum will be \(\frac{\frac{1}{16}}{1-\frac{1}{4}} = 1/12\). Here, the sum of terms 1/16 + 1/64 + ... 1/1024 is definitely less than 1/12. Hence the sum is definitely less than 1/2. Answer is (D).

Quote:
Hi Karishma

The first term in this example is 1/2. Can you kindly explain how to calculate the sum of all terms of a GP with constant ratio >1 ?

Thanks

Sum of n terms of a GP = a(1 - r^n)/(1 - r)

The formula is the same whether |r| is more than 1 or less than 1.

You can find the sum of an infinite GP by the formula a/(1 - r) only when |r| < 1.
You cannot find the sum of an infinite GP when |r| > 1 because the sum will be infinite.
e.g. 3 + 9 + 27 + 81 ...... infinite terms - The sum will be infinite since you keep adding larger and larger terms.
User avatar
Erjan_S
Joined: 12 Nov 2016
Last visit: 08 May 2018
Posts: 107
Own Kudos:
Given Kudos: 87
Concentration: Entrepreneurship, Finance
GMAT 1: 620 Q36 V39
GMAT 2: 650 Q47 V33
GMAT 2: 650 Q47 V33
Posts: 107
Kudos: 135
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Seriously - would anyone be able to resolve in 2 minutes?
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,791
Own Kudos:
12,370
 [1]
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,791
Kudos: 12,370
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Erjan_S,

If you were trying to calculate the exact sum of this sequence, then you would likely find it almost impossible to do that in under 2 minutes. Thankfully, this question doesn't actually ask you to do that - the answer choices are all RANGES, which is a big 'hint' that you're supposed to something OTHER than calculate the exact sum. The 'key' to this question is to look at the sequence in 'pairs' (re: the 1st and 2nd, the 3rd and 4th, the 5th and 6th, etc.). Defining how pairs of terms relate to one another makes solving this question a lot easier than trying to calculate the sum of all 10 terms (my solution explains all of this in detail).

GMAT assassins aren't born, they're made,
Rich
avatar
cuhmoon
Joined: 30 Jun 2015
Last visit: 24 Jun 2019
Posts: 36
Own Kudos:
Given Kudos: 90
Location: Malaysia
Schools: Babson '20
GPA: 3.6
Schools: Babson '20
Posts: 36
Kudos: 49
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Bunuel,

Can we say that if |r| <1, then it's an infinite GP ? How does one define infinite GP?
When does one use the forumula

Sum = b1 (r^n-1)/r-1 ?

Please explain..

Bunuel
Stiv
\(\frac{first \ term}{1-constant}\) Is this formula reversed when we have an increase by 0<constant<1? Does it look like this \(\frac{first \ term}{1+constant}\)?

The sum of infinite geometric progression with common ratio \(|r|<1\), is \(sum=\frac{b}{1-r}\), where \(b\) is the first term.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 17 May 2025
Posts: 101,480
Own Kudos:
Given Kudos: 93,530
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 101,480
Kudos: 725,036
Kudos
Add Kudos
Bookmarks
Bookmark this Post
cuhmoon
Hi Bunuel,

Can we say that if |r| <1, then it's an infinite GP ? How does one define infinite GP?
When does one use the forumula

Sum = b1 (r^n-1)/r-1 ?

Please explain..

Bunuel
Stiv
\(\frac{first \ term}{1-constant}\) Is this formula reversed when we have an increase by 0<constant<1? Does it look like this \(\frac{first \ term}{1+constant}\)?

The sum of infinite geometric progression with common ratio \(|r|<1\), is \(sum=\frac{b}{1-r}\), where \(b\) is the first term.

Infinite progressions are those with infinite number of terms. Whereas a finite sequence has defined first and last terms.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 17 May 2025
Posts: 15,969
Own Kudos:
Given Kudos: 468
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 15,969
Kudos: 73,162
Kudos
Add Kudos
Bookmarks
Bookmark this Post
cuhmoon
Hi Bunuel,

Can we say that if |r| <1, then it's an infinite GP ? How does one define infinite GP?
When does one use the forumula

Sum = b1 (r^n-1)/r-1 ?

Please explain..

Bunuel
Stiv
\(\frac{first \ term}{1-constant}\) Is this formula reversed when we have an increase by 0<constant<1? Does it look like this \(\frac{first \ term}{1+constant}\)?

The sum of infinite geometric progression with common ratio \(|r|<1\), is \(sum=\frac{b}{1-r}\), where \(b\) is the first term.


To add to what Bunuel said, r is the common ratio and has nothing to do with whether a progression is infinite or finite. In either case, r can be less than 1 or more than 1

e.g.
1, 3, 9, 27, 81 ... (infinite sequence with r = 3)
27, 9, 3, 1, 1/3, 1/9 ... (infinite sequence with r = 1/3)
1, 3, 9 (finite sequence with 3 elements and r = 3)
27, 9, 3 (finite sequence with 3 elements and r = 1/3)

Now the point is that the sum of all terms of the first sequence is infinite. The terms will can getting larger and will keep adding up. So the sum will be infinite.

We can find the exact sum of the rest of the 3 sequences.

27, 9, 3, 1, 1/3, 1/9 ... (infinite sequence with r = 1/3)
Sum = a/(1 - r) = 27/(1 - 1/3) = 81/2

1, 3, 9 (finite sequence with 3 elements and r = 3)
Sum = a(r^n - 1)/(r - 1) = 1*(3^3 - 1)/(3 - 1) = 13

27, 9, 3 (finite sequence with 3 elements and r = 1/3)
Sum = a(1 - r^n)/(1 - r) = 27*(1 - 1/3^3)/(1 - 1/3) = 26*3/2 = 39
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 16 May 2025
Posts: 20,778
Own Kudos:
25,851
 [2]
Given Kudos: 292
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 20,778
Kudos: 25,851
 [2]
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
bekbek
For every integer k from 1 to 10, inclusive the "k"th term of a certain sequence is given by \((-1)^{(k+1)}*(\frac{1}{2^k})\) if T is the sum of the first 10 terms in the sequence, then T is

A. greater than 2
B. between 1 and 2
C. between 1/2 and 1
D. between 1/4 and 1/2
E. less than 1/4

We are given that for every integer k from 1 to 10 inclusive, the kth term of a certain sequence is given by (-1)^(k+1) x (1/2^k). We must determine the sum of the first 10 terms in the sequence. Before calculating the sum, we should recognize that the answer choices are provided as ranges of values, rather than as an exact value. Thus, we might not need to calculate the total of the 10 terms to determine an answer. Perhaps we can uncover a pattern to help us find the answer. Let’s start by listing out the first four terms.

k = 1:
(-1)^(1+1) x (1/2^1)
(-1)^2 x 1/2
1 x 1/2 = 1/2

k = 2:
(-1)^(2+1) x (1/2^2)
(-1)^3 x 1/4
-1 x 1/4 = -1/4

k = 3:
(-1)^(3+1) x (1/2^3)
(-1)^4 x 1/8
1 x 1/8 = 1/8

k = 4:
(-1)^(4+1) x (1/2^4)
(-1)^5 x 1/16
-1 x 1/16 = -1/16

Recall that we are trying to estimate the value of T = 1/2 + (-1/4) + 1/8 + (-1/16) + … until we have 10 terms. In other words, T = 1/2 – 1/4 + 1/8 – 1/16 + … until there are 10 terms.

We should notice that the absolute values of the terms are getting smaller:
|1/2|>|-1/4|>|1/8|>|-1/16|.

Notice that starting from the first term of 1/2, we are subtracting something less than 1/2 (notice that 1/4 < 1/2), but then adding back something even less (notice 1/8 < 1/4), and the process continues. Thus, because 1/2 and -1/4 are the largest term and the smallest term in our set, respectively, the sum will never fall below 1/4 or exceed 1/2.

Thus, we conclude that T is greater than 1/4 but less than 1/2.

Answer: D
   1   2   3   
Moderators:
Math Expert
101480 posts
PS Forum Moderator
583 posts