gmatophobia
If \(-1 < x < 1\), which of the following must be true?
A. \(x > x^3\)
B. \(x + x^2 > 0\)
C. \( x^2 > x^3\)
D. \((x+\frac{1}{2})(x-\frac{1}{2}) < 0\)
E. \((x^2+1)(x-1) < 0\)
Attachment:
Screenshot 2024-02-19 112719.png
First check out this write up on the tricky must be true questions:
https://anaprep.com/algebra-game-must-b ... questions/Given: \(-1 < x < 1\)
So x can take values -0.9 ... -0.48 ... 0 ... 0.3 ...0.5... 0.8 .. Which of the following must be true for all these values given?
\(x > x^3\)
Not true for 0. Eliminate
\(x + x^2 > 0\)
Not true for 0. Eliminate
\( x^2 > x^3\)
Not true for 0. Eliminate
\((x+\frac{1}{2})(x-\frac{1}{2}) < 0\)
Not true for 1/2. Eliminate.
\((x^2+1)(x-1) < 0\)
\((x^2+1)\) is always positive. So as long as x < 1 (true for all our given values), this will be negative. Correct.
Answer (E)
Method 2: \(-1 < x < 1\) should be a subset of the values satisfying the given option. (If A, then B implies A must be a subset of B). SO given option should be a superset of -1 < x < 1.
\(x > x^3\)
\(x(x^2 - 1) < 0\)
So x < -1 or 0 < x < 1. Not a super set
\(x + x^2 > 0\)
x > 0 or x < -1. Not a super set
\( x^2 > x^3\)
\(x^2(x -1) < 0\)
x < 1 but not 0. Not a super set
\((x+\frac{1}{2})(x-\frac{1}{2}) < 0\)
-1/2 < x < 1/2. Not a super set.
\((x^2+1)(x-1) < 0\)
x < 1. It is a super set.