subhash29 wrote:

Bunuel wrote:

If \(ab ≠ 0\), is \(|a-b| > |a+b|\)?

Square \(|a-b| > |a+b|\) (we can safely do this since both sides are nonnegative): is \(a^2 - 2ab + b^2 > a^2 +2ab + b^2\) --> is \(ab < 0\)?

(1) \(ab < 0\). Directly answers the question. Sufficient.

(2) \(a > b\). Not sufficient to say whether ab < 0.

Answer: A.

Hai,

I am new here. I have a doubt. Where are the options mentioned, I don't see any A,B,C,D and E beneath the questions.

This is a data sufficiency question. Options for DS questions are always the same.

The data sufficiency problem consists of a question and two statements, labeled (1) and (2), in which certain data are given. You have to decide whether the data given in the statements are sufficient for answering the question. Using the data given in the statements, plus your knowledge of mathematics and everyday facts (such as the number of days in July or the meaning of the word counterclockwise), you must indicate whether—

A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient to answer the question asked.

B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient to answer the question asked.

C. BOTH statements (1) and (2) TOGETHER are sufficient to answer the question asked, but NEITHER statement ALONE is sufficient to answer the question asked.

D. EACH statement ALONE is sufficient to answer the question asked.

E. Statements (1) and (2) TOGETHER are NOT sufficient to answer the question asked, and additional data specific to the problem are needed.

I suggest you to go through the following post

ALL YOU NEED FOR QUANT.

Hope this helps.

Thnx bunuel...