It is currently 20 Nov 2017, 10:53

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If x and y are positive, is x < 10 < y?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42263

Kudos [?]: 132793 [1], given: 12373

If x and y are positive, is x < 10 < y? [#permalink]

Show Tags

New post 01 Oct 2012, 05:17
1
This post received
KUDOS
Expert's post
24
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

62% (01:12) correct 38% (01:21) wrong based on 1707 sessions

HideShow timer Statistics

Kudos [?]: 132793 [1], given: 12373

5 KUDOS received
Director
Director
User avatar
Joined: 22 Mar 2011
Posts: 610

Kudos [?]: 1073 [5], given: 43

WE: Science (Education)
Re: If x and y are positive, is x < 10 < y? [#permalink]

Show Tags

New post 01 Oct 2012, 08:19
5
This post received
KUDOS
Bunuel wrote:
The Official Guide for GMAT® Review, 13th Edition - Quantitative Questions Project

If x and y are positive, is x < 10 < y?

(1) x < y and xy = 100
(2) x^2 < 100 < y^2

Practice Questions
Question: 52
Page: 279
Difficulty: 600


GMAT Club is introducing a new project: The Official Guide for GMAT® Review, 13th Edition - Quantitative Questions Project

Each week we'll be posting several questions from The Official Guide for GMAT® Review, 13th Edition and then after couple of days we'll provide Official Answer (OA) to them along with a slution.

We'll be glad if you participate in development of this project:
1. Please provide your solutions to the questions;
2. Please vote for the best solutions by pressing Kudos button;
3. Please vote for the questions themselves by pressing Kudos button;
4. Please share your views on difficulty level of the questions, so that we have most precise evaluation.

Thank you!


(1) If \(x=y\) and \(xy=100\), then \(x=y=10\). So, if the two positive numbers \(x\) and \(y\) are not equal, one must be smaller than \(10\) and the other one must be greater than \(10\). It is given that \(x<y\), so necessarily \(x<10<y\).
Sufficient.

(2) Since we are given that \(x\) and \(y\) are positive, we can take the square root of all the sides in the given inequality and obtain \(x<10<y\).
Sufficient.

Answer D.
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

Kudos [?]: 1073 [5], given: 43

Expert Post
4 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42263

Kudos [?]: 132793 [4], given: 12373

Re: If x and y are positive, is x < 10 < y? [#permalink]

Show Tags

New post 01 Oct 2012, 05:18
4
This post received
KUDOS
Expert's post
11
This post was
BOOKMARKED
SOLUTION

If x and y are positive, is x < 10 < y?

(1) x < y and xy = 100. Since both \(x\) and \(y\) are positive AND \(x < y\), then in order \(xy=100\) to hold true, one multiple must be less than 10 and another greater than 10, thus \(x < 10 < y\). Sufficient.

(2) x^2 < 100 < y^2. Take the square root from all three parts: \(|x|<10<|y|\). Again, since both \(x\) and \(y\) are positive, then it transforms to \(x < 10 < y\). Sufficient.

Answer: D.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132793 [4], given: 12373

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42263

Kudos [?]: 132793 [0], given: 12373

Re: If x and y are positive, is x < 10 < y? [#permalink]

Show Tags

New post 04 Oct 2012, 14:37
Expert's post
1
This post was
BOOKMARKED
SOLUTION

If x and y are positive, is x < 10 < y?

(1) x < y and xy = 100. Since both \(x\) and \(y\) are positive AND \(x < y\), then in order \(xy=100\) to hold true, one multiple must be less than 10 and another greater than 10, thus \(x < 10 < y\). Sufficient.

(2) x^2 < 100 < y^2. Take the square root from all three parts: \(|x|<10<|y|\). Again, since both \(x\) and \(y\) are positive, then it transforms to \(x < 10 < y\). Sufficient.

Answer: D.

Kudos points given to everyone with correct solution. Let me know if I missed someone.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132793 [0], given: 12373

Senior Manager
Senior Manager
User avatar
Status: Prevent and prepare. Not repent and repair!!
Joined: 13 Feb 2010
Posts: 250

Kudos [?]: 131 [0], given: 282

Location: India
Concentration: Technology, General Management
GPA: 3.75
WE: Sales (Telecommunications)
Re: If x and y are positive, is x < 10 < y? [#permalink]

Show Tags

New post 29 Jan 2013, 08:53
Option 2 is very clear.

Option 1 just drew a number line.

xy=100
Any combination of numbers say 5 X 20 or 4 X 25 etc can give me an 'x' greater than 10 as x should be less than y.

Probably this would be insufficient if x<y would not be given
Attachments

Problem_DS.jpg
Problem_DS.jpg [ 9.17 KiB | Viewed 15396 times ]


_________________

I've failed over and over and over again in my life and that is why I succeed--Michael Jordan
Kudos drives a person to better himself every single time. So Pls give it generously
Wont give up till i hit a 700+

Kudos [?]: 131 [0], given: 282

Director
Director
User avatar
Status: Verbal Forum Moderator
Joined: 17 Apr 2013
Posts: 602

Kudos [?]: 637 [0], given: 298

Location: India
GMAT 1: 710 Q50 V36
GMAT 2: 750 Q51 V41
GMAT 3: 790 Q51 V49
GPA: 3.3
Re: If x and y are positive, is x < 10 < y? [#permalink]

Show Tags

New post 24 Nov 2013, 23:49
Bunuel wrote:
SOLUTION

If x and y are positive, is x < 10 < y?

(1) x < y and xy = 100. Since both \(x\) and \(y\) are positive AND \(x < y\), then in order \(xy=100\) to hold true, one multiple must be less than 10 and another greater than 10, thus \(x < 10 < y\). Sufficient.

(2) x^2 < 100 < y^2. Take the square root from all three parts: \(|x|<10<|y|\). Again, since both \(x\) and \(y\) are positive, then it transforms to \(x < 10 < y\). Sufficient.

Answer: D.



What If GMAT twist it by not giving that x and y are +ves?
_________________

Like my post Send me a Kudos :) It is a Good manner.
My Debrief: http://gmatclub.com/forum/how-to-score-750-and-750-i-moved-from-710-to-189016.html

Kudos [?]: 637 [0], given: 298

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42263

Kudos [?]: 132793 [0], given: 12373

Re: If x and y are positive, is x < 10 < y? [#permalink]

Show Tags

New post 25 Nov 2013, 03:15
Expert's post
1
This post was
BOOKMARKED
honchos wrote:
Bunuel wrote:
SOLUTION

If x and y are positive, is x < 10 < y?

(1) x < y and xy = 100. Since both \(x\) and \(y\) are positive AND \(x < y\), then in order \(xy=100\) to hold true, one multiple must be less than 10 and another greater than 10, thus \(x < 10 < y\). Sufficient.

(2) x^2 < 100 < y^2. Take the square root from all three parts: \(|x|<10<|y|\). Again, since both \(x\) and \(y\) are positive, then it transforms to \(x < 10 < y\). Sufficient.

Answer: D.



What If GMAT twist it by not giving that x and y are +ves?


In this case the answer would be C.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132793 [0], given: 12373

Senior Manager
Senior Manager
avatar
Joined: 15 Aug 2013
Posts: 301

Kudos [?]: 83 [0], given: 23

Re: If x and y are positive, is x < 10 < y? [#permalink]

Show Tags

New post 13 Apr 2014, 11:27
Bunuel wrote:
honchos wrote:
Bunuel wrote:
SOLUTION

If x and y are positive, is x < 10 < y?

(1) x < y and xy = 100. Since both \(x\) and \(y\) are positive AND \(x < y\), then in order \(xy=100\) to hold true, one multiple must be less than 10 and another greater than 10, thus \(x < 10 < y\). Sufficient.

(2) x^2 < 100 < y^2. Take the square root from all three parts: \(|x|<10<|y|\). Again, since both \(x\) and \(y\) are positive, then it transforms to \(x < 10 < y\). Sufficient.

Answer: D.



What If GMAT twist it by not giving that x and y are +ves?


In this case the answer would be C.



2 questions:

1) What is +ves?
2) If the stem read that x & y could be positive OR negative, that would mean that only statement one is sufficient. Is that correct?

My reasoning being, the second inequality could become \(x<+-10<y\). Meaning, x would have to be less than -10, lets call it -25 and y would have to be 4 which would yield a "no" for the question. Additionally, if we took the positive squareroot, the question stem would yield a yes. Am I thinking about this the right way?

Kudos [?]: 83 [0], given: 23

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42263

Kudos [?]: 132793 [0], given: 12373

Re: If x and y are positive, is x < 10 < y? [#permalink]

Show Tags

New post 14 Apr 2014, 01:50
Expert's post
1
This post was
BOOKMARKED
russ9 wrote:
Bunuel wrote:
honchos wrote:
SOLUTION

If x and y are positive, is x < 10 < y?

(1) x < y and xy = 100. Since both \(x\) and \(y\) are positive AND \(x < y\), then in order \(xy=100\) to hold true, one multiple must be less than 10 and another greater than 10, thus \(x < 10 < y\). Sufficient.

(2) x^2 < 100 < y^2. Take the square root from all three parts: \(|x|<10<|y|\). Again, since both \(x\) and \(y\) are positive, then it transforms to \(x < 10 < y\). Sufficient.

Answer: D.

What If GMAT twist it by not giving that x and y are +ves?


In this case the answer would be C.



2 questions:

1) What is +ves?
2) If the stem read that x & y could be positive OR negative, that would mean that only statement one is sufficient. Is that correct?

My reasoning being, the second inequality could become \(x<+-10<y\). Meaning, x would have to be less than -10, lets call it -25 and y would have to be 4 which would yield a "no" for the question. Additionally, if we took the positive squareroot, the question stem would yield a yes. Am I thinking about this the right way?


1. +ve = positive.

2. If we were not told that x and y are positive, then the answer would be C, not A:
Is x < 10 < y?

(1) x < y and xy = 100. If x=-20 and y=-5, then the answer is NO but if x=5 and y=20, then the answer is YES. Not sufficient.
Notice that from xy = 100 we can deduce that x and y have the same sign.

(2) x^2 < 100 < y^2 --> -10 < x < 10 and |y|>10. So, y can be more than 10 as well as less than -10. Not sufficient.

(1)+(2) Since x < y, then y < -10 is not possible, thus y > 10. So, we have that x < 10 < y. Sufficient.

Answer: C.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132793 [0], given: 12373

Senior Manager
Senior Manager
avatar
Joined: 15 Aug 2013
Posts: 301

Kudos [?]: 83 [0], given: 23

Re: If x and y are positive, is x < 10 < y? [#permalink]

Show Tags

New post 04 May 2014, 08:21
Bunuel wrote:
russ9 wrote:


2 questions:

1) What is +ves?
2) If the stem read that x & y could be positive OR negative, that would mean that only statement one is sufficient. Is that correct?

My reasoning being, the second inequality could become \(x<+-10<y\). Meaning, x would have to be less than -10, lets call it -25 and y would have to be 4 which would yield a "no" for the question. Additionally, if we took the positive squareroot, the question stem would yield a yes. Am I thinking about this the right way?


1. +ve = positive.

2. If we were not told that x and y are positive, then the answer would be C, not A:
Is x < 10 < y?

(1) x < y and xy = 100. If x=-20 and y=-5, then the answer is NO but if x=5 and y=20, then the answer is YES. Not sufficient.
Notice that from xy = 100 we can deduce that x and y have the same sign.

(2) x^2 < 100 < y^2 --> -10 < x < 10 and |y|>10. So, y can be more than 10 as well as less than -10. Not sufficient.

(1)+(2) Since x < y, then y < -10 is not possible, thus y > 10. So, we have that x < 10 < y. Sufficient.

Answer: C.

Hope it's clear.


Hi Bunuel,

I see how you can prove that 1 is NOT sufficient although I'm having a hard time with #2. The equality reads x^2 < 100 < y^2. Doesn't that yield that x < +/- 10? Wouldn't that make it is x<10 or -x>10? I can tell that my signs are off but if I follow the math, they seem fine. What am I missing here? Assuming that this part of the problem is resolved(as I can see the light at the end of the tunnel), I still don't see how you get insufficient.

Assuming that the correct inequalities are -10<x<10 and 10<y<-10, are you saying that since the final inequality can be y<-10<x or x<10<y, therefore insufficient? But wouldn't we say that only x<10<y pertains to the main equation and therefore sufficient?

Hope my question is clear.

Kudos [?]: 83 [0], given: 23

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42263

Kudos [?]: 132793 [0], given: 12373

Re: If x and y are positive, is x < 10 < y? [#permalink]

Show Tags

New post 04 May 2014, 08:30
russ9 wrote:
Bunuel wrote:
russ9 wrote:


2 questions:

1) What is +ves?
2) If the stem read that x & y could be positive OR negative, that would mean that only statement one is sufficient. Is that correct?

My reasoning being, the second inequality could become \(x<+-10<y\). Meaning, x would have to be less than -10, lets call it -25 and y would have to be 4 which would yield a "no" for the question. Additionally, if we took the positive squareroot, the question stem would yield a yes. Am I thinking about this the right way?


1. +ve = positive.

2. If we were not told that x and y are positive, then the answer would be C, not A:
Is x < 10 < y?

(1) x < y and xy = 100. If x=-20 and y=-5, then the answer is NO but if x=5 and y=20, then the answer is YES. Not sufficient.
Notice that from xy = 100 we can deduce that x and y have the same sign.

(2) x^2 < 100 < y^2 --> -10 < x < 10 and |y|>10. So, y can be more than 10 as well as less than -10. Not sufficient.

(1)+(2) Since x < y, then y < -10 is not possible, thus y > 10. So, we have that x < 10 < y. Sufficient.

Answer: C.

Hope it's clear.


Hi Bunuel,

I see how you can prove that 1 is NOT sufficient although I'm having a hard time with #2. The equality reads x^2 < 100 < y^2. Doesn't that yield that x < +/- 10? Wouldn't that make it is x<10 or -x>10? I can tell that my signs are off but if I follow the math, they seem fine. What am I missing here? Assuming that this part of the problem is resolved(as I can see the light at the end of the tunnel), I still don't see how you get insufficient.

Assuming that the correct inequalities are -10<x<10 and 10<y<-10, are you saying that since the final inequality can be y<-10<x or x<10<y, therefore insufficient? But wouldn't we say that only x<10<y pertains to the main equation and therefore sufficient?

Hope my question is clear.


\(x^2 < 100\) means that \(|x| < 10\) --> \(-10 < x < 10\) (so x IS less than 10).
\(y^2>100\) means that \(|y| > 10\) --> \(y< -10\) or \(y>10\) (so y may be less as well as greater than 10).

For example, if \(x=0\) and \(y=100\), then YES \(x < 10 < y\) but if \(x=0\) and \(y=-100\), then \(x < 10 < y\) dose not hold true.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132793 [0], given: 12373

Intern
Intern
avatar
Joined: 31 Mar 2014
Posts: 10

Kudos [?]: [0], given: 0

Re: If x and y are positive, is x < 10 < y? [#permalink]

Show Tags

New post 23 Jun 2014, 18:42
I get the entire process, but I selected E, because when I took the square roots I thought that left me with two options
x < -10 < y and,
x < 10 < y

Because it is telling me that x and y are positive, then I no longer take into account a -10 as a possibility when I take the square root of 100?

Kudos [?]: [0], given: 0

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42263

Kudos [?]: 132793 [0], given: 12373

Re: If x and y are positive, is x < 10 < y? [#permalink]

Show Tags

New post 24 Jun 2014, 06:05
carolinanmd wrote:
I get the entire process, but I selected E, because when I took the square roots I thought that left me with two options
x < -10 < y and,
x < 10 < y

Because it is telling me that x and y are positive, then I no longer take into account a -10 as a possibility when I take the square root of 100?


Since x and y are positive then x^2 < 100 < y^2 implies that x < 10 < y. How can it be x < -10?

Sorry don't understand what your question is.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132793 [0], given: 12373

Director
Director
User avatar
S
Joined: 24 Nov 2015
Posts: 586

Kudos [?]: 40 [0], given: 231

Location: United States (LA)
Reviews Badge CAT Tests
Re: If x and y are positive, is x < 10 < y? [#permalink]

Show Tags

New post 19 Apr 2016, 14:16
correct answer is option D
statement 1 gives information that as product xy = 100 and x<y , x is less than 10 and y is greater than 10. sufficient
statement 2 gives information that |x|<10<|y| but as it is given x<y clearly sufficient

Kudos [?]: 40 [0], given: 231

Current Student
avatar
Joined: 23 Mar 2016
Posts: 37

Kudos [?]: 6 [0], given: 0

Schools: Tulane '18 (M)
Re: If x and y are positive, is x < 10 < y? [#permalink]

Show Tags

New post 22 May 2016, 15:30
Here we are told both x and y are positive, IS x<10<y?

Before I begin, I say, x could be 9, or .5, or 7.5(if x < 10 < y is true)
y could be 10.01 or 100, or 24.5 (if x < 10 < y is true)

So, here we go

1) x<y and xy = 100
since x is less than y, and both x and y are positive, we know that x must be less than 10, and y more then 10 (sufficient)
2) x^2 < 100 < y^2
since x and y are both positive, this is sufficient

D

Kudos [?]: 6 [0], given: 0

Manager
Manager
User avatar
S
Joined: 09 Mar 2017
Posts: 151

Kudos [?]: 50 [0], given: 314

Location: India
Concentration: Marketing, Organizational Behavior
WE: Information Technology (Computer Software)
Re: If x and y are positive, is x < 10 < y? [#permalink]

Show Tags

New post 28 Jun 2017, 09:24
Bunuel wrote:
SOLUTION

If x and y are positive, is x < 10 < y?

(1) x < y and xy = 100. Since both \(x\) and \(y\) are positive AND \(x < y\), then in order \(xy=100\) to hold true, one multiple must be less than 10 and another greater than 10, thus \(x < 10 < y\). Sufficient.

(2) x^2 < 100 < y^2. Take the square root from all three parts: \(|x|<10<|y|\). Again, since both \(x\) and \(y\) are positive, then it transforms to \(x < 10 < y\). Sufficient.

Answer: D.

Hi Bunuel ,

As per statement 1, why can't we consider two possibilities of x=1, y =100 & the other usual values of x=10,y=10 ?
Both the sets follow x<y & xy=100.

We can, similarly, use this set of values for statement 2 as well. Considering these, shouldn't the answer be E. ?
_________________

------------------------------
"Trust the timing of your life"
Hit Kudus if this has helped you get closer to your goal, and also to assist others save time. Tq :)

Kudos [?]: 50 [0], given: 314

Manager
Manager
User avatar
S
Joined: 09 Mar 2017
Posts: 151

Kudos [?]: 50 [0], given: 314

Location: India
Concentration: Marketing, Organizational Behavior
WE: Information Technology (Computer Software)
Re: If x and y are positive, is x < 10 < y? [#permalink]

Show Tags

New post 28 Jun 2017, 09:30
TaN1213 wrote:
Bunuel wrote:
SOLUTION

If x and y are positive, is x < 10 < y?

(1) x < y and xy = 100. Since both \(x\) and \(y\) are positive AND \(x < y\), then in order \(xy=100\) to hold true, one multiple must be less than 10 and another greater than 10, thus \(x < 10 < y\). Sufficient.

(2) x^2 < 100 < y^2. Take the square root from all three parts: \(|x|<10<|y|\). Again, since both \(x\) and \(y\) are positive, then it transforms to \(x < 10 < y\). Sufficient.

Answer: D.

Hi Bunuel ,

As per statement 1, why can't we consider two possibilities of x=1, y =100 & the other usual values of x=10,y=10 ?
Both the sets follow x<y & xy=100.

We can, similarly, use this set of values for statement 2 as well. Considering these, shouldn't the answer be E. ?

I understood where I went Wrong. Apology for the question.

Sent from my Redmi Note 4 using GMAT Club Forum mobile app
_________________

------------------------------
"Trust the timing of your life"
Hit Kudus if this has helped you get closer to your goal, and also to assist others save time. Tq :)

Kudos [?]: 50 [0], given: 314

Re: If x and y are positive, is x < 10 < y?   [#permalink] 28 Jun 2017, 09:30
Display posts from previous: Sort by

If x and y are positive, is x < 10 < y?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.