GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 24 Mar 2019, 13:05

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Tanya prepared 4 different letters to be sent to 4 different addresses

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

 
Manager
Manager
User avatar
Affiliations: CFA L3 Candidate, Grad w/ Highest Honors
Joined: 03 Nov 2007
Posts: 122
Location: USA
Schools: Chicago Booth R2 (WL), Wharton R2 w/ int, Kellogg R2 w/ int
WE 1: Global Operations (Futures & Portfolio Financing) - Hedge Fund ($10bn+ Multi-Strat)
WE 2: Investment Analyst (Credit strategies) - Fund of Hedge Fund ($10bn+ Multi-Strat)
Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post Updated on: 05 Feb 2019, 05:21
17
119
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

44% (02:05) correct 56% (02:04) wrong based on 808 sessions

HideShow timer Statistics

Tanya prepared 4 different letters to be sent to 4 different addresses. For each letter, she prepared an envelope with its correct address. If the 4 letters are to be put into the 4 envelopes at random, what is the probability that only 1 letter will be put into the envelope with its correct address?

A. 1/24
B. 1/8
C. 1/4
D. 1/3
E. 3/8

Originally posted by robertrdzak on 11 Oct 2009, 11:51.
Last edited by Bunuel on 05 Feb 2019, 05:21, edited 1 time in total.
Renamed the topic and edited the question.
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 53800
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 11 Oct 2009, 12:12
21
34
robertrdzak wrote:
Tanya prepared 4 different letters to be sent to 4 different addresses. For each letter, she prepared an envelope with its correct address. If the 4 letters are to be put into the 4 envelopes at random, what is the probability that only 1 letter will be put into the envelope with its correct address?

A) 1/24
B) 1/8
C) 1/4
D) 1/3
E) 3/8

Spoiler: :: OA
D) 1/3


Could someone please explain a good way to go about solving this please?


Total # of ways of choosing envelopes=4!=24.
Only one letter in the right envelope: 4(# of envelopes)*2(# of ways possible to arrange 3 letters incorrectly in the envelopes, when one is correct)
ABCD(envelopes)
ACDB(letters)
ADBC(letters)
(When A is in the right envelope other three have only 2 possible incorrect arrangements)
As we have 4 letters, total # of ways 4*2=8

P(C=1)=8/24=1/3

To check all other possible scenarios check: letter-arrangements-understanding-probability-and-combinats-84912.html
_________________
New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics
Most Helpful Community Reply
Intern
Intern
avatar
Joined: 13 Oct 2009
Posts: 45
Location: New York, NY
Schools: Columbia, Johnson, Tuck, Stern
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 10 Nov 2009, 10:04
77
28
You can solve this the traditional way:

Probability that first letter in the right envelope= 1/4
Probability that second letter in wrong envelope = 2/3
Probability that third letter in wrong envelope = 1/2
Probability that forth letter in wrong envelope = 1

1/4 * 2/3 * 1/2 = 1/12

Multiply by 4, representing the four letters in the correct envelope:

1/12 * 4 = 4/12 = 1/3
General Discussion
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 53800
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 10 Nov 2009, 10:50
2
1
Intern
Intern
avatar
Joined: 18 Mar 2012
Posts: 46
GPA: 3.7
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 17 Mar 2013, 10:19
1
Bunuel wrote:
robertrdzak wrote:
Tanya prepared 4 different letters to be sent to 4 different addresses. For each letter, she prepared an envelope with its correct address. If the 4 letters are to be put into the 4 envelopes at random, what is the probability that only 1 letter will be put into the envelope with its correct address?

A) 1/24
B) 1/8
C) 1/4
D) 1/3
E) 3/8

Spoiler: :: OA
D) 1/3


Could someone please explain a good way to go about solving this please?


Total # of ways of choosing envelopes=4!=24.
Only one letter in the right envelope: 4(# of envelopes)*2(# of ways possible to arrange 3 letters incorrectly in the envelopes, when one is correct)
ABCD(envelopes)
ACDB(letters)
ADBC(letters)
(When A is in the right envelope other three have only 2 possible incorrect arrangements)
As we have 4 letters, total # of ways 4*2=8

P(C=1)=8/24=1/3

To check all other possible scenarios check: letter-arrangements-understanding-probability-and-combinats-84912.html



Hi,

I do not get why we are multiplying by 4? Is it because we have to repeat the process described above for each of A, B, C and D as we do not know which one will be the right one?
Thanks!
Manager
Manager
avatar
Status: Trying.... & desperate for success.
Joined: 17 May 2012
Posts: 60
Location: India
Concentration: Leadership, Entrepreneurship
Schools: NUS '15
GPA: 2.92
WE: Analyst (Computer Software)
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 18 Mar 2013, 07:55
4
2
alex1233 wrote:
Bunuel wrote:
robertrdzak wrote:
Tanya prepared 4 different letters to be sent to 4 different addresses. For each letter, she prepared an envelope with its correct address. If the 4 letters are to be put into the 4 envelopes at random, what is the probability that only 1 letter will be put into the envelope with its correct address?

A) 1/24
B) 1/8
C) 1/4
D) 1/3
E) 3/8

Spoiler: :: OA
D) 1/3


Could someone please explain a good way to go about solving this please?


Total # of ways of choosing envelopes=4!=24.
Only one letter in the right envelope: 4(# of envelopes)*2(# of ways possible to arrange 3 letters incorrectly in the envelopes, when one is correct)
ABCD(envelopes)
ACDB(letters)
ADBC(letters)
(When A is in the right envelope other three have only 2 possible incorrect arrangements)
As we have 4 letters, total # of ways 4*2=8

P(C=1)=8/24=1/3

To check all other possible scenarios check: letter-arrangements-understanding-probability-and-combinats-84912.html



Hi,

I do not get why we are multiplying by 4? Is it because we have to repeat the process described above for each of A, B, C and D as we do not know which one will be the right one?
Thanks!


Hi,
probability of ONE letter being in correct envelope and rest of the other 3 being in in-correct envelope is [1/4] * [2/3 * 1/2 * 1] = 1/12

Say there are 4 letters ABCD, then per above scenario, we are just finding the probability of just one letter A. We have B,C & D as well.
So the probability of letters B,C&D to individually having a chance to put in correct envelope is,

4 * 1/12 = 1/3

Hence the answer
Veritas Prep GMAT Instructor
User avatar
D
Joined: 16 Oct 2010
Posts: 9007
Location: Pune, India
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 18 Mar 2013, 21:33
6
2
alex1233 wrote:
Bunuel wrote:
robertrdzak wrote:
Tanya prepared 4 different letters to be sent to 4 different addresses. For each letter, she prepared an envelope with its correct address. If the 4 letters are to be put into the 4 envelopes at random, what is the probability that only 1 letter will be put into the envelope with its correct address?

A) 1/24
B) 1/8
C) 1/4
D) 1/3
E) 3/8

Spoiler: :: OA
D) 1/3


Could someone please explain a good way to go about solving this please?


Total # of ways of choosing envelopes=4!=24.
Only one letter in the right envelope: 4(# of envelopes)*2(# of ways possible to arrange 3 letters incorrectly in the envelopes, when one is correct)
ABCD(envelopes)
ACDB(letters)
ADBC(letters)
(When A is in the right envelope other three have only 2 possible incorrect arrangements)
As we have 4 letters, total # of ways 4*2=8

P(C=1)=8/24=1/3

To check all other possible scenarios check: letter-arrangements-understanding-probability-and-combinats-84912.html



Hi,

I do not get why we are multiplying by 4? Is it because we have to repeat the process described above for each of A, B, C and D as we do not know which one will be the right one?
Thanks!


Check out all three letter and four letter scenarios here:
http://www.veritasprep.com/blog/2011/12 ... envelopes/
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Intern
Intern
avatar
Joined: 07 Aug 2012
Posts: 15
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 30 Nov 2013, 03:16
1
Wayxi wrote:
You can solve this the traditional way:

Probability that first letter in the right envelope= 1/4
Probability that second letter in wrong envelope = 2/3
Probability that third letter in wrong envelope = 1/2
Probability that forth letter in wrong envelope = 1

1/4 * 2/3 * 1/2 = 1/12

Multiply by 4, representing the four letters in the correct envelope:

1/12 * 4 = 4/12 = 1/3



Dear Wayxi ...why u take probability for second letter as 2/3 ..i do understand 3 but confused about 2 in numerator . Isnt it should be 1/3 ?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 53800
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 30 Nov 2013, 04:19
archit wrote:
Wayxi wrote:
You can solve this the traditional way:

Probability that first letter in the right envelope= 1/4
Probability that second letter in wrong envelope = 2/3
Probability that third letter in wrong envelope = 1/2
Probability that forth letter in wrong envelope = 1

1/4 * 2/3 * 1/2 = 1/12

Multiply by 4, representing the four letters in the correct envelope:

1/12 * 4 = 4/12 = 1/3



Dear Wayxi ...why u take probability for second letter as 2/3 ..i do understand 3 but confused about 2 in numerator . Isnt it should be 1/3 ?


When one letter is in right envelope, there are 3 left. The probability that the second letter gets in WRONG is 2/3.
_________________
New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics
Intern
Intern
User avatar
Joined: 18 Jan 2014
Posts: 11
GMAT 1: 640 Q49 V28
GPA: 3.5
WE: Operations (Energy and Utilities)
GMAT ToolKit User Reviews Badge
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 16 Jun 2014, 10:19
2
Total # of ways of choosing envelopes=4!=24.
Only one letter in the right envelope: 4(# of envelopes)*2(# of ways possible to arrange 3 letters incorrectly in the envelopes, when one is correct)
ABCD(envelopes)
ACDB(letters)
ADBC(letters)
(When A is in the right envelope other three have only 2 possible incorrect arrangements)
As we have 4 letters, total # of ways 4*2=8

P(C=1)=8/24=1/3

To check all other possible scenarios check: letter-arrangements-understanding-probability-and-combinats-84912.html[/quote]


Hi,

I do not get why we are multiplying by 4? Is it because we have to repeat the process described above for each of A, B, C and D as we do not know which one will be the right one?
Thanks![/quote]

Check out all three letter and four letter scenarios here:
http://www.veritasprep.com/blog/2011/12 ... envelopes/[/quote]



THANKS A LOT ! THE EXPLANATION IS NOT ONLY CONVINCING BUT ALSO EASY TO GRASP.
Intern
Intern
User avatar
Joined: 31 Aug 2013
Posts: 10
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 10 Aug 2014, 23:25
2
robertrdzak wrote:
Tanya prepared 4 different letters to be sent to 4 different addresses. For each letter, she prepared an envelope with its correct address. If the 4 letters are to be put into the 4 envelopes at random, what is the probability that only 1 letter will be put into the envelope with its correct address?

A) 1/24
B) 1/8
C) 1/4
D) 1/3
E) 3/8



We can also do this question by derangement method:

1. First choose one of the letters and put it in right envelope:
That can be done in -> 4C1= 4 ways.

2. Now we would derange the rest of 3 envelopes in :
3! (1/2! - 1/3!) = 2 ways
Finally the number of ways will be = statement 1 x statement 2= 4x2= 8 ways --------------- 3

We have sample space= 4! (number of ways of arranging 4 different letters) = 24 ways ---------------- 4

So the probability will be = statement 3/ statement 4 = 8/24= 1/3 (answer)

P.S. In general the number of ways of derangement of n things D(n)= n! [1/2! -1/3!+1/4!- .....+ (-1)^n/n!]
Intern
Intern
avatar
Joined: 09 Aug 2016
Posts: 3
GMAT ToolKit User
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 06 Nov 2016, 15:46
Wayxi wrote:
You can solve this the traditional way:

Probability that first letter in the right envelope= 1/4
Probability that second letter in wrong envelope = 2/3
Probability that third letter in wrong envelope = 1/2
Probability that forth letter in wrong envelope = 1

1/4 * 2/3 * 1/2 = 1/12

Multiply by 4, representing the four letters in the correct envelope:

1/12 * 4 = 4/12 = 1/3


I think this method may have flaws. What if the second letter is in the right envelope? In this case, those probabilities would be:
Probability that first letter in the wrong envelope= 3/4
Probability that second letter in right envelope = 1/3
Probability that third letter in wrong envelope = 1/2
Probability that forth letter in wrong envelope = 1
3/4*1/3*1/2*1=1/8

I am confused. Please explain. Thank you.
Retired Moderator
avatar
D
Joined: 25 Feb 2013
Posts: 1216
Location: India
GPA: 3.82
GMAT ToolKit User Premium Member Reviews Badge
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 11 Feb 2017, 11:06
allenmaxin wrote:
Wayxi wrote:
You can solve this the traditional way:

Probability that first letter in the right envelope= 1/4
Probability that second letter in wrong envelope = 2/3
Probability that third letter in wrong envelope = 1/2
Probability that forth letter in wrong envelope = 1

1/4 * 2/3 * 1/2 = 1/12

Multiply by 4, representing the four letters in the correct envelope:

1/12 * 4 = 4/12 = 1/3


I think this method may have flaws. What if the second letter is in the right envelope? In this case, those probabilities would be:
Probability that first letter in the wrong envelope= 3/4
Probability that second letter in right envelope = 1/3
Probability that third letter in wrong envelope = 1/2
Probability that forth letter in wrong envelope = 1
3/4*1/3*1/2*1=1/8

I am confused. Please explain. Thank you.


Hi,
In your approach, you are taking into consideration arrangement of 4 letters into 1st, 2nd, 3rd & 4th envelop, whereas for this question order does not matter.
So, if you have 4 letters, A B C D then,
probability of A getting into correct envelop will be = 1/4*2/3*1/2*1 = 1/12
Probability of B,C,D getting into correct envelop will be same
Hence probability of only 1 letter getting into correct envelop will be = 1/12+1/12+1/12+1/12 = 4*1/12 = 1/3
Intern
Intern
avatar
B
Joined: 06 Feb 2017
Posts: 2
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 24 Apr 2017, 18:41
4
Wayxi wrote:
You can solve this the traditional way:

Probability that first letter in the right envelope= 1/4
Probability that second letter in wrong envelope = 2/3
Probability that third letter in wrong envelope = 1/2
Probability that forth letter in wrong envelope = 1

1/4 * 2/3 * 1/2 = 1/12

Multiply by 4, representing the four letters in the correct envelope:

1/12 * 4 = 4/12 = 1/3


For anyone wondering about this solution, it is actually correct only by coincidence. This method will fail when the number of letters increased to 5, and is therefore an incorrect formula.

"There are issues with this calculation. it happens to hit upon the correct value at the end, but that's a total coincidence.

i agree with the first two probabilities: the probability that letter a goes into envelope a is indeed 1/4, and the probability if that happens that the letter b goes into an envelope other than b is 2/3.
however, it's downhill from there: if letter b actually went into envelope c, then the probability of letter c not going into envelope c is 1. the probability is only 1/2 (as you've stated) if letter b winds up in envelope d.
similarly, the final probability is either 0 or 1, depending on whether the last envelope remaining is envelope d or not. if letter b goes in envelope c and letter c goes in envelope b (fulfilling all of your conditions), then letter d is stuck going into envelope d, making that last probability 0.

so, if you're going to go this route, you're stuck with doing the following:
* first 2 steps = same as you have them now
* 3rd step = 2 branches of a probability tree, depending on whether envelope c is still available (vs. whether it was used for letter b)
* 4th step = 2 branches off EACH of those prior 2 branches, depending on whether envelope d is still available (vs. whether it was used for letter b or c)"

If you would like to read further, see Manhattan Prep's forum post on this question.

This is a quote from Ron Purewal
Current Student
User avatar
D
Joined: 12 Aug 2015
Posts: 2616
Schools: Boston U '20 (M)
GRE 1: Q169 V154
GMAT ToolKit User Premium Member
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 28 Apr 2017, 01:24
Director
Director
User avatar
S
Joined: 17 Dec 2012
Posts: 626
Location: India
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 31 May 2017, 03:55
1
@
robertrdzak wrote:
Tanya prepared 4 different letters to be sent to 4 different addresses. For each letter, she prepared an envelope with its correct address. If the 4 letters are to be put into the 4 envelopes at random, what is the probability that only 1 letter will be put into the envelope with its correct address?

A) 1/24
B) 1/8
C) 1/4
D) 1/3
E) 3/8

1. Total number of arrangements is 24
2. List out the arrangements partly, if letter 1 is in the first envelope
They are 1234, 1243, 1324,1342, 1423, 1432
3. Out of the six above cases, 2 cases satisfy the condition. It will be the same for the other letters in the first envelope
4. So the probability is 8/24 which is 1/3.
_________________
Srinivasan Vaidyaraman
Sravna Holistic Solutions
http://www.sravnatestprep.com

Holistic and Systematic Approach
Intern
Intern
avatar
B
Joined: 05 Jun 2016
Posts: 19
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 15 Jun 2017, 05:11
1
This is how I did it. Please tell me if my method is right.

Let the 4 letters be ABCD. Let the 4 addresses/envelopes be EFGH.

Suppose the right letter-envelope combo is as follows: 1) A-E; (2) B-F; (3) C-G; (4)D-H . Thus, there are 4 total ways of putting the right letter into the right envelope.

Now, number of ways of getting the wrong letter envelope combo: (1)AF (2)AG (3) AH (4) BE (5)BG (6)BH , etc. You will have 3 +3 for each of letters C and D. Therefore, total ways of getting it wrong 12.

Now question asks the probability of getting 1 letter into the right envelope (i.e. any one of those 4 correct combo's) = 4/12 = 1/3.
Current Student
avatar
P
Joined: 17 Jun 2016
Posts: 502
Location: India
GMAT 1: 720 Q49 V39
GMAT 2: 710 Q50 V37
GPA: 3.65
WE: Engineering (Energy and Utilities)
GMAT ToolKit User Premium Member Reviews Badge
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 25 Jun 2017, 11:16
2
robertrdzak wrote:
Tanya prepared 4 different letters to be sent to 4 different addresses. For each letter, she prepared an envelope with its correct address. If the 4 letters are to be put into the 4 envelopes at random, what is the probability that only 1 letter will be put into the envelope with its correct address?

A) 1/24
B) 1/8
C) 1/4
D) 1/3
E) 3/8


Refer to solution in the picture
Attachments

WhatsApp Image 2017-06-25 at 10.14.43 PM.jpeg
WhatsApp Image 2017-06-25 at 10.14.43 PM.jpeg [ 27.78 KiB | Viewed 54833 times ]


_________________
Intern
Intern
avatar
B
Joined: 22 Apr 2017
Posts: 1
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 10 Nov 2017, 19:11
archit wrote:
Wayxi wrote:
You can solve this the traditional way:

Probability that first letter in the right envelope= 1/4
Probability that second letter in wrong envelope = 2/3
Probability that third letter in wrong envelope = 1/2
Probability that forth letter in wrong envelope = 1

1/4 * 2/3 * 1/2 = 1/12

Multiply by 4, representing the four letters in the correct envelope:

1/12 * 4 = 4/12 = 1/3



Dear Wayxi ...why u take probability for second letter as 2/3 ..i do understand 3 but confused about 2 in numerator . Isnt it should be 1/3 ?



Hi Bunuel,

Can you please explain why we multiply by 4 in the end?
Manager
Manager
User avatar
B
Joined: 03 May 2017
Posts: 92
GMAT ToolKit User
Re: Tanya prepared 4 different letters to be sent to 4 different addresses  [#permalink]

Show Tags

New post 21 Nov 2017, 20:24
ritikarele wrote:
archit wrote:
Wayxi wrote:
You can solve this the traditional way:

Probability that first letter in the right envelope= 1/4
Probability that second letter in wrong envelope = 2/3
Probability that third letter in wrong envelope = 1/2
Probability that forth letter in wrong envelope = 1

1/4 * 2/3 * 1/2 = 1/12

Multiply by 4, representing the four letters in the correct envelope:

1/12 * 4 = 4/12 = 1/3



Dear Wayxi ...why u take probability for second letter as 2/3 ..i do understand 3 but confused about 2 in numerator . Isnt it should be 1/3 ?



Hi Bunuel,

Can you please explain why we multiply by 4 in the end?


Not Bunuel, but happy to help.

You multiplied by 4 because any of the 4 letters can be in the right envelope. That is there are 4 ways of choosing one right envelope from 4, i.e \(4C1= 4\), which is also the same as choosing 3 wrong envelopes from 4, i.e \(4C3= 4.\)
GMAT Club Bot
Re: Tanya prepared 4 different letters to be sent to 4 different addresses   [#permalink] 21 Nov 2017, 20:24

Go to page    1   2    Next  [ 27 posts ] 

Display posts from previous: Sort by

Tanya prepared 4 different letters to be sent to 4 different addresses

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.