Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

The shaded region in the figure above represents a rectangular frame [#permalink]

Show Tags

29 Jun 2012, 14:14

3

This post received KUDOS

27

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

95% (hard)

Question Stats:

64% (02:34) correct
36% (03:24) wrong based on 365 sessions

HideShow timer Statistics

Attachment:

Frame.png [ 2.69 KiB | Viewed 21770 times ]

The shaded region in the figure above represents a rectangular frame with length 18 inches and width 15 inches. The frame encloses a rectangular picture that has the same area as the frame itself. If the length and width of the picture have the same ratio as the lenght and width of the frame, what is the length of the picture, in inches?

The shaded region in the figure above represents a rectangular frame with length 18 inches and width 15 inches. The frame encloses a rectangular picture that has the same area as the frame itself. If the length and width of the picture have the same ratio as the lenght and width of the frame, what is the length of the picture, in inches?

A. \(9\sqrt2\) B. \(\frac {3}{2}\) C. \(\frac {9}{\sqrt2}\) D. \(15 ( 1 - \frac {1}{\sqrt2}\) E. \(\frac {9}{2}\)

Say the length and the width of the picture are \(x\) and \(y\) respectively. Since they have the same ratio as the lenght and width of the frame, then \(\frac{x}{y}=\frac{18}{15}\) --> \(y=\frac{5}{6}x\).

Next, since the frame encloses a rectangular picture that has the same area as the frame itself and the whole area is \(18*15\), then the areas of the frame (shaded region) and the picture (inner region) are \(\frac{18*15}{2}=9*15\) each.

The area of the picture is \(xy=9*15\) --> \(x*(\frac{5}{6}x)=9*15\) --> \(x^2=2*81\) --> \(x=9\sqrt{2}\).

Re: The shaded region in the figure above represents a rectangular frame [#permalink]

Show Tags

01 Jul 2012, 02:56

3

This post received KUDOS

1

This post was BOOKMARKED

The total area is 15*18=270, the area of the picture is half of the whole area = 135. the ration of the width and length of the picture is the same as the frames 15/18 or 5/6. We need to find the length of the picture 5x*6x=135, 30x^2=135, x^2=135/30, x=3/sqrt2, so the length = 6*3/sqrt2=9sqrt2
_________________

If you found my post useful and/or interesting - you are welcome to give kudos!

Re: The shaded region in the figure above represents a rectangular frame [#permalink]

Show Tags

12 Jan 2014, 07:56

1

This post received KUDOS

Total area of the given figure= 18*15 = 270 Area of frame = Area of the picture => We need to divide the total area into two parts, 270/2 = 135. The frame and picture have 135 inch^2 area each. l(pic) l(frame) ----- = ---------- = 6/5 ==> Area of picture = 135= 6k * 5k ==> 30k^2=135 ==> k =3/sqrt(2). So, l(pic)= 6* 3/sqrt(2) = 9*sqrt(2) w(pic) w(frame)

Re: The shaded region in the figure above represents a rectangular frame [#permalink]

Show Tags

25 Jul 2017, 14:38

Hi Math Experts,

I am unable to understand the reason to divide by 2 as stated in the reply, can somebody help?

since the frame encloses a rectangular picture that has the same area as the frame itself and the whole area is \(18*15\), then the areas of the frame (shaded region) and the picture (inner region) are \(\frac{18*15}{2}=9*15\) each

I am unable to understand the reason to divide by 2 as stated in the reply, can somebody help?

since the frame encloses a rectangular picture that has the same area as the frame itself and the whole area is \(18*15\), then the areas of the frame (shaded region) and the picture (inner region) are \(\frac{18*15}{2}=9*15\) each

The combined area of black and white is 18*15 (black + white = 18*15). The area of black = the area of white, so black + black = 18*15 --> black =18*15/2.

The shaded region in the figure above represents a rectangular frame with length 18 inches and width 15 inches. The frame encloses a rectangular picture that has the same area as the frame itself. If the length and width of the picture have the same ratio as the lenght and width of the frame, what is the length of the picture, in inches?

A. \(9\sqrt2\)

B. \(\frac {3}{2}\)

C. \(\frac {9}{\sqrt2}\)

D. \(15 ( 1 - \frac {1}{\sqrt2})\)

E. \(\frac {9}{2}\)

We see that the total area of the frame and the picture is 18 x 15 = 270. Since we know that the length and width of the picture have the same ratio as the length and width of the frame, let’s denote the length of the picture by 18k and the width of the picture by 15k, where k is some positive constant.

Then, the area of the picture is (18k)(15k) = 270k^2

The area of the frame can be found by subtracting the area of the picture from the total area of the frame and the picture: 270 - 270k^2

Since the area of the frame is equal to the area of the picture, we have:

270 - 270k^2 = 270k^2

270(1 - k^2) = 270k^2

1 - k^2 = k^2

2k^2 = 1

k^2 = 1/2

k = 1/√2

Since the length of the picture was represented by 18k, the length is 18(1/√2) = 18/√2 = (18/√2)*√2/√2= 18√2/2 = 9√2.

Answer: A
_________________

Jeffery Miller Head of GMAT Instruction

GMAT Quant Self-Study Course 500+ lessons 3000+ practice problems 800+ HD solutions

Re: The shaded region in the figure above represents a rectangular frame [#permalink]

Show Tags

18 Sep 2017, 14:26

Bunuel wrote:

Stiv wrote:

Attachment:

Frame.png

The shaded region in the figure above represents a rectangular frame with length 18 inches and width 15 inches. The frame encloses a rectangular picture that has the same area as the frame itself. If the length and width of the picture have the same ratio as the lenght and width of the frame, what is the length of the picture, in inches?

A. \(9\sqrt2\) B. \(\frac {3}{2}\) C. \(\frac {9}{\sqrt2}\) D. \(15 ( 1 - \frac {1}{\sqrt2}\) E. \(\frac {9}{2}\)

Say the length and the width of the picture are \(x\) and \(y\) respectively. Since they have the same ratio as the lenght and width of the frame, then \(\frac{x}{y}=\frac{18}{15}\) --> \(y=\frac{5}{6}x\).

Next, since the frame encloses a rectangular picture that has the same area as the frame itself and the whole area is \(18*15\), then the areas of the frame (shaded region) and the picture (inner region) are \(\frac{18*15}{2}=9*15\) each.

The area of the picture is \(xy=9*15\) --> \(x*(\frac{5}{6}x)=9*15\) --> \(x^2=2*81\) --> \(x=9\sqrt{2}\).

The shaded region in the figure above represents a rectangular frame with length 18 inches and width 15 inches. The frame encloses a rectangular picture that has the same area as the frame itself. If the length and width of the picture have the same ratio as the lenght and width of the frame, what is the length of the picture, in inches?

A. \(9\sqrt2\) B. \(\frac {3}{2}\) C. \(\frac {9}{\sqrt2}\) D. \(15 ( 1 - \frac {1}{\sqrt2}\) E. \(\frac {9}{2}\)

Say the length and the width of the picture are \(x\) and \(y\) respectively. Since they have the same ratio as the lenght and width of the frame, then\(\frac{x}{y}=\frac{18}{15}\) --> \(y=\frac{5}{6}x\).

Next, since the frame encloses a rectangular picture that has the same area as the frame itself and the whole area is \(18*15\), then the areas of the frame (shaded region) and the picture (inner region) are \(\frac{18*15}{2}=9*15\) each.

The area of the picture is \(xy=9*15\) --> \(x*(\frac{5}{6}x)=9*15\) --> \(x^2=2*81\) --> \(x=9\sqrt{2}\).

Answer: A.

bunuel why do place x in place of y? x∗(5/6x)

In \(xy=9*15\), we substitute y in terms of x, which we found above (check the highlighted part) to get \(x*(\frac{5}{6}x)=9*15\). This allows us to get an equation with only one variable x, and solve it.
_________________

Version 8.1 of the WordPress for Android app is now available, with some great enhancements to publishing: background media uploading. Adding images to a post or page? Now...

Post today is short and sweet for my MBA batchmates! We survived Foundations term, and tomorrow's the start of our Term 1! I'm sharing my pre-MBA notes...

“Keep your head down, and work hard. Don’t attract any attention. You should be grateful to be here.” Why do we keep quiet? Being an immigrant is a constant...