GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 19 May 2019, 18:07

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Triangle QSR is inscribed in a circle. Is QSR a right triangle?

Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 55150
Triangle QSR is inscribed in a circle. Is QSR a right triangle?  [#permalink]

### Show Tags

14 Apr 2017, 03:52
00:00

Difficulty:

25% (medium)

Question Stats:

67% (00:51) correct 33% (00:46) wrong based on 186 sessions

### HideShow timer Statistics

Triangle QSR is inscribed in a circle. Is QSR a right triangle?

(1) QR is a diameter of the circle.
(2) Length QS equals 3 and length QR equals 5.

Attachment:

2017-04-14_1450.png [ 25.9 KiB | Viewed 1833 times ]

_________________
Director
Joined: 21 Mar 2016
Posts: 518
Triangle QSR is inscribed in a circle. Is QSR a right triangle?  [#permalink]

### Show Tags

Updated on: 14 Apr 2017, 07:57
stat1 : QR is a diameter... hence traingle in semicircle is right traingle suff

stat 2 : not suff... the third side cud be anything

ans A

Originally posted by mohshu on 14 Apr 2017, 07:24.
Last edited by mohshu on 14 Apr 2017, 07:57, edited 1 time in total.
Director
Joined: 05 Mar 2015
Posts: 998
Triangle QSR is inscribed in a circle. Is QSR a right triangle?  [#permalink]

### Show Tags

14 Apr 2017, 07:43
1
mohshu wrote:
stat1 : QR is a diameter... hence traingle in semicircle is right traingle suff

stat 2 : pythagoras theorem applies here and its true only for right trangles

ans D

mohshu
for option (2)
what if SR =4.5 ???

thanks
Director
Joined: 21 Mar 2016
Posts: 518
Re: Triangle QSR is inscribed in a circle. Is QSR a right triangle?  [#permalink]

### Show Tags

14 Apr 2017, 07:56
rohit8865 wrote:
mohshu wrote:
stat1 : QR is a diameter... hence traingle in semicircle is right traingle suff

stat 2 : pythagoras theorem applies here and its true only for right trangles

ans D

mohshu
for option (2)
what if SR =4.5 ???

thanks

rohit8865 got that

only stat is suff

ans A

thanks
Retired Moderator
Joined: 04 Aug 2016
Posts: 484
Location: India
GPA: 4
WE: Engineering (Telecommunications)
Re: Triangle QSR is inscribed in a circle. Is QSR a right triangle?  [#permalink]

### Show Tags

14 Apr 2017, 08:17
Statement 1 is a property and it is sufficient

Statement 2 : The other side can take any value between 2 and 8; if it is 4 then it is sufficient. Not enough information available.

Option A
Manager
Joined: 13 Mar 2013
Posts: 162
Location: United States
GPA: 3.5
WE: Engineering (Telecommunications)
Re: Triangle QSR is inscribed in a circle. Is QSR a right triangle?  [#permalink]

### Show Tags

15 Apr 2017, 07:57
1
Ans :
st 1 ) sufficient -- QR is diameter . It is property of inscribed triangle in circle . If the one of the sides equal the diameter of the circle . Then the triangle is Right angle triangle .

st 2 ) Not sufficient

two side is given as 3 ,4 but the third side can be 5 or 7 . Apply the property of sum of two side in triangle is greater than the third side . Then you will realize . The triangle can have value as ( 3, 4, 5 --> right angle ) or ( 3,4, 7 --> not a right angle )

Regards,

Press Kudos if you like the post.
_________________
Regards ,
Math Expert
Joined: 02 Sep 2009
Posts: 55150
Re: Triangle QSR is inscribed in a circle. Is QSR a right triangle?  [#permalink]

### Show Tags

15 Apr 2017, 09:03
Bunuel wrote:

Triangle QSR is inscribed in a circle. Is QSR a right triangle?

(1) QR is a diameter of the circle.
(2) Length QS equals 3 and length QR equals 5.

Attachment:
2017-04-14_1450.png

Triangle QSR is inscribed in a semi-cirlce is QSR a right triangle?

A right triangle inscribed in a circle must have its hypotenuse as the diameter of the circle. The reverse is also true: if the diameter of the circle is also the triangle’s hypotenuse, then that triangle is a right triangle.

(1) QR is a diameter of the circle --> according to the above property QSR must be a right triangle. Sufficient.

(2) Length QS equals 3 and length QR equals to 5 --> it's not necessary QSR to be 3-4-5 right triangle (therefor QR to be diameter/hypotenuse), for example if diameter is more than 5, say 10 than it's possible to inscribe QSR in a semi-circle so that SR would be the largest side and QSR would be obtuse-angled triangle. Not sufficient.

_________________
Manager
Joined: 10 Apr 2015
Posts: 178
GPA: 3.31
Re: Triangle QSR is inscribed in a circle. Is QSR a right triangle?  [#permalink]

### Show Tags

15 Apr 2017, 09:39
A. II statement does not suggest that SR is 4. Hence NS.

Sent from my ZUK Z2132 using GMAT Club Forum mobile app
_________________
In case you find my posts helpful, give me Kudos. Thank you.
Director
Joined: 02 Sep 2016
Posts: 660
Re: Triangle QSR is inscribed in a circle. Is QSR a right triangle?  [#permalink]

### Show Tags

07 Jul 2017, 06:02
Bunuel wrote:
Bunuel wrote:

Triangle QSR is inscribed in a circle. Is QSR a right triangle?

(1) QR is a diameter of the circle.
(2) Length QS equals 3 and length QR equals 5.

Attachment:
2017-04-14_1450.png

Triangle QSR is inscribed in a semi-cirlce is QSR a right triangle?

A right triangle inscribed in a circle must have its hypotenuse as the diameter of the circle. The reverse is also true: if the diameter of the circle is also the triangle’s hypotenuse, then that triangle is a right triangle.

(1) QR is a diameter of the circle --> according to the above property QSR must be a right triangle. Sufficient.

(2) Length QS equals 3 and length QR equals to 5 --> it's not necessary QSR to be 3-4-5 right triangle (therefor QR to be diameter/hypotenuse), for example if diameter is more than 5, say 10 than it's possible to inscribe QSR in a semi-circle so that SR would be the largest side and QSR would be obtuse-angled triangle. Not sufficient.

Hi Bunuel
If it were 3-4-5; 3-4-10; 6-4-5;................any multiple of 3:4:5, then it would be a right angled triangle ?

Also to know if that triangle inscribed in the circle is a right triangle, then diameter would be the longest side of the triangle.

Are there any other factors that can help us understand whether the triangle is a right angled triangle?
Math Expert
Joined: 02 Sep 2009
Posts: 55150
Re: Triangle QSR is inscribed in a circle. Is QSR a right triangle?  [#permalink]

### Show Tags

07 Jul 2017, 06:14
Shiv2016 wrote:
Bunuel wrote:
Bunuel wrote:

Triangle QSR is inscribed in a circle. Is QSR a right triangle?

(1) QR is a diameter of the circle.
(2) Length QS equals 3 and length QR equals 5.

Attachment:
2017-04-14_1450.png

Triangle QSR is inscribed in a semi-cirlce is QSR a right triangle?

A right triangle inscribed in a circle must have its hypotenuse as the diameter of the circle. The reverse is also true: if the diameter of the circle is also the triangle’s hypotenuse, then that triangle is a right triangle.

(1) QR is a diameter of the circle --> according to the above property QSR must be a right triangle. Sufficient.

(2) Length QS equals 3 and length QR equals to 5 --> it's not necessary QSR to be 3-4-5 right triangle (therefor QR to be diameter/hypotenuse), for example if diameter is more than 5, say 10 than it's possible to inscribe QSR in a semi-circle so that SR would be the largest side and QSR would be obtuse-angled triangle. Not sufficient.

Hi Bunuel
If it were 3-4-5; 3-4-10; 6-4-5;................any multiple of 3:4:5, then it would be a right angled triangle ?

Also to know if that triangle inscribed in the circle is a right triangle, then diameter would be the longest side of the triangle.

Are there any other factors that can help us understand whether the triangle is a right angled triangle?

• Any triangle whose sides are in the ratio 3:4:5 is a right triangle. Such triangles that have their sides in the ratio of whole numbers are called Pythagorean Triples. There are an infinite number of them, and this is just the smallest. If you multiply the sides by any number, the result will still be a right triangle whose sides are in the ratio 3:4:5. For example 6, 8, and 10.
• A Pythagorean triple consists of three positive integers $$a$$, $$b$$, and $$c$$, such that $$a^2 + b^2 = c^2$$. Such a triple is commonly written $$(a, b, c)$$, and a well-known example is $$(3, 4, 5)$$. If $$(a, b, c)$$ is a Pythagorean triple, then so is $$(ka, kb, kc)$$ for any positive integer $$k$$. There are 16 primitive Pythagorean triples with c ≤ 100:
(3, 4, 5) (5, 12, 13) (7, 24, 25) (8, 15, 17) (9, 40, 41) (11, 60, 61) (12, 35, 37) (13, 84, 85) (16, 63, 65) (20, 21, 29) (28, 45, 53) (33, 56, 65) (36, 77, 85) (39, 80, 89) (48, 55, 73) (65, 72, 97).

So, 3:4:10 is not a Pythagorean triple, 3^2 + 4^2 does not equal 10^2. You'll get a Pythagorean triple if you multiply another Pythagorean triple by a positive integer, so multiply the entire ratio, not just one of its numbers.
_________________
Non-Human User
Joined: 09 Sep 2013
Posts: 10952
Re: Triangle QSR is inscribed in a circle. Is QSR a right triangle?  [#permalink]

### Show Tags

29 Nov 2018, 09:19
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: Triangle QSR is inscribed in a circle. Is QSR a right triangle?   [#permalink] 29 Nov 2018, 09:19
Display posts from previous: Sort by