Author 
Message 
TAGS:

Hide Tags

Director
Joined: 13 Nov 2003
Posts: 778
Location: BULGARIA

A certain bag of gemstones is composed of twothirds
[#permalink]
Show Tags
29 May 2006, 07:32
Question Stats:
66% (02:05) correct 34% (02:08) wrong based on 386 sessions
HideShow timer Statistics
A certain bag of gemstones is composed of twothirds diamonds and onethird rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement? (A) 5/36 (B) 5/24 (C) 1/12 (D) 1/6 (E) 1/4
Official Answer and Stats are available only to registered users. Register/ Login.




Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 8190
Location: Pune, India

Re: A certain bag of gemstones is composed of twothirds
[#permalink]
Show Tags
09 Jan 2014, 21:55
b00gigi wrote: Can someone explain the
2/3 * (2R1)/(3R1)
part? Say, a bag has 6 diamonds and 3 rubies. What is the probability of selecting 2 diamonds one after the other without replacement? Probability of selecting one diamond = 6/9 Probability of selecting yet another diamond after selecting one = 5/8 (no of diamonds has gone down by 1 and total no. of diamonds has gone down by 1 too) Total probability = (6/9)*(5/8) Here, we assume that no of rubies is R and no of diamonds is 2R (since no of diamonds is twice the no of rubies) Probability of selecting two diamonds without replacement = (2R/3R) * (2R  1)/(3R  1) = 5/12 Either cross multiply to get the value of R or try to plug in some values to see where you get a multiple of 12 in the denominator. Once you get the value of R as 3, you know the number of diamonds is 6. Probability of picking two rubies one after the other without replacement = (3/9) *(2/8) = 1/12
_________________
Karishma Veritas Prep GMAT Instructor
Save up to $1,000 on GMAT prep through 8/20! Learn more here >
GMAT selfstudy has never been more personalized or more fun. Try ORION Free!




Intern
Joined: 05 Apr 2006
Posts: 34

Re: Challenge MHTNGMAT
[#permalink]
Show Tags
29 May 2006, 09:03
BG wrote: A certain bag of gemstones is composed of twothirds diamonds and onethird rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?
(A) 5/36 (B) 5/24 (C) 1/12 (D) 1/6 (E) 1/4
is answer 1/12
2/3 * (2X1) / (3X1) = 5/ 12 => X = 3
So total gems = 9
and probability of ruby = 1/3 * 2/8 = 1/12




VP
Joined: 29 Dec 2005
Posts: 1318

Re: Challenge MHTNGMAT
[#permalink]
Show Tags
29 May 2006, 09:46
guptaraja wrote: BG wrote: A certain bag of gemstones is composed of twothirds diamonds and onethird rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?
(A) 5/36 (B) 5/24 (C) 1/12 (D) 1/6 (E) 1/4 is answer 1/12 2/3 * (2X1) / (3X1) = 5/ 12 => X = 3 So total gems = 9 and probability of ruby = 1/3 * 2/8 = 1/12
this is good enough.........
[{2/3(x)}/x] [{(2x/3)1}/x1] = 5/12
x^29x = 0
x = 0, 9
so x = 9
diamond = 6
ruby = 3
the prob (2 ruby) = 3c2/9c2 = 1/12
C.



Senior Manager
Status: Final Lap
Joined: 25 Oct 2012
Posts: 262
Concentration: General Management, Entrepreneurship
GPA: 3.54
WE: Project Management (Retail Banking)

Re: A certain bag of gemstones is composed of twothirds
[#permalink]
Show Tags
Updated on: 09 Feb 2013, 19:23
BG wrote: A certain bag of gemstones is composed of twothirds diamonds and onethird rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?
(A) 5/36 (B) 5/24 (C) 1/12 (D) 1/6 (E) 1/4 Let R be the numbers of rubies in the bag, we told that the selection is made without replacement in both cases ( selecting two diamonds or selecting two rubies) Hence, we have : \(\frac{2}{3}*\frac{2R1}{3R1}=\frac{5}{12}\) So, the number of diamonds in the bag is 6. Likewise, the number of rubies in the bag is 3 and the total of the gemstones is 9. The probability of selecting two rubies from the bag without replacement is : \(\frac{1}{3}*\frac{2}{8}=\frac{1}{12}\) Answer : C
_________________
KUDOS is the good manner to help the entire community.
"If you don't change your life, your life will change you"
Originally posted by Rock750 on 06 Feb 2013, 17:38.
Last edited by Rock750 on 09 Feb 2013, 19:23, edited 1 time in total.



Manager
Joined: 08 Dec 2012
Posts: 64
Location: United Kingdom
WE: Engineering (Consulting)

Re: A certain bag of gemstones is composed of twothirds
[#permalink]
Show Tags
09 Feb 2013, 19:13
Rock750 wrote: BG wrote: A certain bag of gemstones is composed of twothirds diamonds and onethird rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?
(A) 5/36 (B) 5/24 (C) 1/12 (D) 1/6 (E) 1/4 Let R be the numbers of rubies in the bag, we told that the selection is made without replacement in both cases ( selecting two diamonds or selecting two rubies) Hence, we have : \(\frac{2}{3}*\frac{2R1}{3R1}=\frac{5}{12}\) So, the number of diamonds in the bag is 3. Likewise, the number of rubies in the bag is 6 and the total of the gemstones is 9. The probability of selecting two rubies from the bag without replacement is : \(\frac{1}{3}*\frac{2}{8}=\frac{1}{12}\) Answer : C Looks like you got your diamonds and rubies mixed up though you got it right later



Senior Manager
Status: Final Lap
Joined: 25 Oct 2012
Posts: 262
Concentration: General Management, Entrepreneurship
GPA: 3.54
WE: Project Management (Retail Banking)

Re: A certain bag of gemstones is composed of twothirds
[#permalink]
Show Tags
09 Feb 2013, 19:28
nave81 wrote: Rock750 wrote: BG wrote: A certain bag of gemstones is composed of twothirds diamonds and onethird rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?
(A) 5/36 (B) 5/24 (C) 1/12 (D) 1/6 (E) 1/4 Let R be the numbers of rubies in the bag, we told that the selection is made without replacement in both cases ( selecting two diamonds or selecting two rubies) Hence, we have : \(\frac{2}{3}*\frac{2R1}{3R1}=\frac{5}{12}\) So, the number of diamonds in the bag is 3. Likewise, the number of rubies in the bag is 6 and the total of the gemstones is 9. The probability of selecting two rubies from the bag without replacement is : \(\frac{1}{3}*\frac{2}{8}=\frac{1}{12}\) Answer : C Looks like you got your diamonds and rubies mixed up though you got it right later u are right navy81, thx Hope this silly mistake had not confused anyone. Anyway, i think it's OK by now
_________________
KUDOS is the good manner to help the entire community.
"If you don't change your life, your life will change you"



VP
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1096
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8

Re: what is the probability of selecting 2 rubees from the bag
[#permalink]
Show Tags
10 Aug 2013, 09:50
Diamonds=2x Rubees=x Two D= \(\frac{2x}{3x}*\frac{(2x1)}{(3x1)}=\frac{5}{12}\), solve for x and you get x=0(non sense) or x=3 (better). Diamonds=2*3 Rubees=3 Probability of getting 2 rubees=\(\frac{3}{9}*\frac{2}{8}=\frac{1}{12}\)
_________________
It is beyond a doubt that all our knowledge that begins with experience.
Kant , Critique of Pure Reason Tips and tricks: Inequalities , Mixture  Review: MGMAT workshop Strategy: SmartGMAT v1.0  Questions: Verbal challenge SC III CR New SC set out !! , My QuantRules for Posting in the Verbal Forum  Rules for Posting in the Quant Forum[/size][/color][/b]



SVP
Joined: 06 Sep 2013
Posts: 1851
Concentration: Finance

Re: A certain bag of gemstones is composed of twothirds
[#permalink]
Show Tags
09 Jan 2014, 15:00
BG wrote: A certain bag of gemstones is composed of twothirds diamonds and onethird rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?
(A) 5/36 (B) 5/24 (C) 1/12 (D) 1/6 (E) 1/4 (d/d+r)(d1/d+r1) = 5/12 d = 2r Therefore r = 3 d= 6 Probability of 2 rubies is (3/9)(2/8) = 1/12 C it is



Intern
Joined: 29 Aug 2013
Posts: 12

Re: A certain bag of gemstones is composed of twothirds
[#permalink]
Show Tags
09 Jan 2014, 15:27
Can someone explain the
2/3 * (2R1)/(3R1)
part?



EMPOWERgmat Instructor
Status: GMAT Assassin/CoFounder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 12189
Location: United States (CA)

Re: A certain bag of gemstones is composed of twothirds
[#permalink]
Show Tags
03 Feb 2015, 22:53
Hi All, We can solve this problem by TESTing VALUES. However, we have so much specific information, we CANNOT TEST random values. We have to use the information in the prompt to pick a logical number that matches all of the given "restrictions" Here's what we have to work with: 1) Since the gems can be broken down into 2/3 diamonds and 1/3 rubies, the TOTAL must be a MULTIPLE of 3. 2) Since the probability of pulling 2 diamonds is 5/12, when we multiply the two individual probabilities, we MUST end with a denominator that is a multiple of 12 (so the fraction can be reduced to 5/12). Let's start at "3" and work up.... If there are 3 gems, then we have 2 diamonds. The probability of pulling 2 diamonds is (2/3)(1/2) = 2/6 which is NOT a match. If there are 6 gems, then we have 4 diamonds. The probability of pulling 2 diamonds is (4/6)(3/5) = 12/30.....30 cannot reduce to 12. This is NOT a match If there are 9 gems, then we have 6 diamonds. The probability of pulling 2 diamonds is (6/9)(5/8) = 5/12...This IS a MATCH So we have.... Total= 9 Diamonds = 6 Rubies = 3 The question asks for the probability of selecting 2 rubies.... The probability of selecting the first ruby = (3/9) The probability of selecting the second ruby = (2/8) (3/9)(2/8) = 6/72 = 1/12 Final Answer: GMAT assassins aren't born, they're made, Rich
_________________
760+: Learn What GMAT Assassins Do to Score at the Highest Levels Contact Rich at: Rich.C@empowergmat.com
Rich Cohen
CoFounder & GMAT Assassin
Special Offer: Save $75 + GMAT Club Tests Free
Official GMAT Exam Packs + 70 Pt. Improvement Guarantee www.empowergmat.com/
***********************Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!***********************



Director
Joined: 26 Oct 2016
Posts: 655
Location: United States
Concentration: Marketing, International Business
GPA: 4
WE: Education (Education)

Re: A certain bag of gemstones is composed of twothirds
[#permalink]
Show Tags
05 Jan 2017, 20:27
The simplest way to solve the problem is to recognize that the total number of gems in the bag must be a multiple of 3, since we have 2/3 diamonds and 1/3 rubies. If we had a total number that was not divisible by 3, we would not be able to divide the stones into thirds. Given this fact, we can test some multiples of 3 to see whether any fit the description in the question. The smallest number of gems we could have is 6: 4 diamonds and 2 rubies (since we need at least 2 rubies). Is the probability of selecting two of these diamonds equal to 5/12? 4/6 × 3/5 = 12/30 = 2/5. Since this does not equal 5/12, this cannot be the total number of gems. The next multiple of 3 is 9, which yields 6 diamonds and 3 rubies: 6/9 × 5/8 = 30/72 = 5/12. Since this matches the probability in the question, we know we have 6 diamonds and 3 rubies. Now we can figure out the probability of selecting two rubies: 3/9 × 2/8 = 6/72 = 1/12 The correct answer is C.
_________________
Thanks & Regards, Anaira Mitch



Target Test Prep Representative
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 3176
Location: United States (CA)

Re: A certain bag of gemstones is composed of twothirds
[#permalink]
Show Tags
08 Dec 2017, 11:27
BG wrote: A certain bag of gemstones is composed of twothirds diamonds and onethird rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?
(A) 5/36 (B) 5/24 (C) 1/12 (D) 1/6 (E) 1/4 We are given that the bag contains twothirds diamonds and onethird rubies. We are also given that the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12. Let’s represent the number of rubies in the bag by x. Since the number of diamonds is twice the number of rubies, the number of diamonds in the bag will be 2x. The probability of choosing two diamonds from the bag, without replacement, can be represented in terms of x by (2x/3x)((2x  1)/(3x  1)). We are also given that this probability is equal to 5/12. Thus: (2x/3x)((2x  1)/(3x  1)) = 5/12 (4x^2  2x)/(9x^2  3x) = 5/12 Cross multiply to obtain: 48x^2  24x = 45x^2  15x 3x^2  9x = 0 3x(x  3) = 0 From this equation, we obtain x = 0 or x = 3. Since we know the bag is not empty, x must equal 3, and thus there are 6 diamonds and 3 rubies in the bag. Now the probability of choosing two rubies from the bag, without replacement, can be calculated to be (3/9)(2/8) = (1/3)(1/4) = 1/12. Alternate Solution: We can let T = the total number of gems, (2/3)T = diamonds, and (1/3)T = rubies. Since the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, we can create the following equation: [(2/3)T/T] x [((2/3)T  1)/(T  1)] = 5/12 (2/3) x ((2/3)T  1)/(T  1) = 5/12 ((2/3)T  1)/(T  1) = 5/8 Cross multiply, we have: (16/3)T  8 = 5T  5 16T  24 = 15T  15 T = 9 We know that there are twice as many diamonds as rubies. Thus, there are 6 diamonds and 3 rubies, so the probability of selecting two rubies from the bag is: 3/9 x 2/8 = 1/3 x 1/4 = 1/12 Answer: C
_________________
Scott WoodburyStewart
Founder and CEO
GMAT Quant SelfStudy Course
500+ lessons 3000+ practice problems 800+ HD solutions




Re: A certain bag of gemstones is composed of twothirds &nbs
[#permalink]
08 Dec 2017, 11:27






