GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

It is currently 28 Mar 2020, 11:00

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

A certain bag of gemstones is composed of two-thirds

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Director
Director
avatar
Joined: 13 Nov 2003
Posts: 610
Location: BULGARIA
A certain bag of gemstones is composed of two-thirds  [#permalink]

Show Tags

New post 29 May 2006, 06:32
8
1
15
00:00
A
B
C
D
E

Difficulty:

  65% (hard)

Question Stats:

65% (02:47) correct 35% (02:40) wrong based on 288 sessions

HideShow timer Statistics

A certain bag of gemstones is composed of two-thirds diamonds and one-third rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?

(A) 5/36
(B) 5/24
(C) 1/12
(D) 1/6
(E) 1/4
Most Helpful Expert Reply
Veritas Prep GMAT Instructor
User avatar
V
Joined: 16 Oct 2010
Posts: 10219
Location: Pune, India
Re: A certain bag of gemstones is composed of two-thirds  [#permalink]

Show Tags

New post 09 Jan 2014, 20:55
6
2
b00gigi wrote:
Can someone explain the

2/3 * (2R-1)/(3R-1)

part?


Say, a bag has 6 diamonds and 3 rubies. What is the probability of selecting 2 diamonds one after the other without replacement?

Probability of selecting one diamond = 6/9
Probability of selecting yet another diamond after selecting one = 5/8 (no of diamonds has gone down by 1 and total no. of diamonds has gone down by 1 too)
Total probability = (6/9)*(5/8)

Here, we assume that no of rubies is R and no of diamonds is 2R (since no of diamonds is twice the no of rubies)
Probability of selecting two diamonds without replacement = (2R/3R) * (2R - 1)/(3R - 1) = 5/12
Either cross multiply to get the value of R or try to plug in some values to see where you get a multiple of 12 in the denominator.
Once you get the value of R as 3, you know the number of diamonds is 6.

Probability of picking two rubies one after the other without replacement = (3/9) *(2/8) = 1/12
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Most Helpful Community Reply
VP
VP
User avatar
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1000
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
GMAT ToolKit User
Re: what is the probability of selecting 2 rubees from the bag  [#permalink]

Show Tags

New post 10 Aug 2013, 08:50
5
2
Diamonds=2x
Rubees=x

Two D= \(\frac{2x}{3x}*\frac{(2x-1)}{(3x-1)}=\frac{5}{12}\), solve for x and you get x=0(non sense) or x=3 (better).

Diamonds=2*3
Rubees=3

Probability of getting 2 rubees=\(\frac{3}{9}*\frac{2}{8}=\frac{1}{12}\)
General Discussion
Intern
Intern
avatar
Joined: 05 Apr 2006
Posts: 27
Re: Challenge MHTNGMAT  [#permalink]

Show Tags

New post 29 May 2006, 08:03
3
2
BG wrote:
A certain bag of gemstones is composed of two-thirds diamonds and one-third rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?

(A) 5/36
(B) 5/24
(C) 1/12
(D) 1/6
(E) 1/4


is answer 1/12

2/3 * (2X-1) / (3X-1) = 5/ 12 => X = 3
So total gems = 9
and probability of ruby = 1/3 * 2/8 = 1/12
Director
Director
User avatar
Joined: 29 Dec 2005
Posts: 853
Re: Challenge MHTNGMAT  [#permalink]

Show Tags

New post 29 May 2006, 08:46
2
guptaraja wrote:
BG wrote:
A certain bag of gemstones is composed of two-thirds diamonds and one-third rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?

(A) 5/36
(B) 5/24
(C) 1/12
(D) 1/6
(E) 1/4


is answer 1/12

2/3 * (2X-1) / (3X-1) = 5/ 12 => X = 3
So total gems = 9
and probability of ruby = 1/3 * 2/8 = 1/12


this is good enough.........

[{2/3(x)}/x] [{(2x/3)-1}/x-1] = 5/12
x^2-9x = 0
x = 0, 9

so x = 9
diamond = 6
ruby = 3
the prob (2 ruby) = 3c2/9c2 = 1/12

C.
Manager
Manager
User avatar
Status: Final Lap
Joined: 25 Oct 2012
Posts: 223
Concentration: General Management, Entrepreneurship
GPA: 3.54
WE: Project Management (Retail Banking)
Re: A certain bag of gemstones is composed of two-thirds  [#permalink]

Show Tags

New post Updated on: 09 Feb 2013, 18:23
3
1
BG wrote:
A certain bag of gemstones is composed of two-thirds diamonds and one-third rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?

(A) 5/36
(B) 5/24
(C) 1/12
(D) 1/6
(E) 1/4


Let R be the numbers of rubies in the bag,
we told that the selection is made without replacement in both cases ( selecting two diamonds or selecting two rubies)

Hence, we have : \(\frac{2}{3}*\frac{2R-1}{3R-1}=\frac{5}{12}\)

So, the number of diamonds in the bag is 6. Likewise, the number of rubies in the bag is 3 and the total of the gemstones is 9.

The probability of selecting two rubies from the bag without replacement is :

\(\frac{1}{3}*\frac{2}{8}=\frac{1}{12}\)

Answer : C

Originally posted by Rock750 on 06 Feb 2013, 16:38.
Last edited by Rock750 on 09 Feb 2013, 18:23, edited 1 time in total.
Manager
Manager
avatar
Joined: 08 Dec 2012
Posts: 60
Location: United Kingdom
WE: Engineering (Consulting)
Re: A certain bag of gemstones is composed of two-thirds  [#permalink]

Show Tags

New post 09 Feb 2013, 18:13
Rock750 wrote:
BG wrote:
A certain bag of gemstones is composed of two-thirds diamonds and one-third rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?

(A) 5/36
(B) 5/24
(C) 1/12
(D) 1/6
(E) 1/4


Let R be the numbers of rubies in the bag,
we told that the selection is made without replacement in both cases ( selecting two diamonds or selecting two rubies)

Hence, we have : \(\frac{2}{3}*\frac{2R-1}{3R-1}=\frac{5}{12}\)

So, the number of diamonds in the bag is 3. Likewise, the number of rubies in the bag is 6 and the total of the gemstones is 9.

The probability of selecting two rubies from the bag without replacement is :

\(\frac{1}{3}*\frac{2}{8}=\frac{1}{12}\)

Answer : C



Looks like you got your diamonds and rubies mixed up :wink: though you got it right later
Manager
Manager
User avatar
Status: Final Lap
Joined: 25 Oct 2012
Posts: 223
Concentration: General Management, Entrepreneurship
GPA: 3.54
WE: Project Management (Retail Banking)
Re: A certain bag of gemstones is composed of two-thirds  [#permalink]

Show Tags

New post 09 Feb 2013, 18:28
nave81 wrote:
Rock750 wrote:
BG wrote:
A certain bag of gemstones is composed of two-thirds diamonds and one-third rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?

(A) 5/36
(B) 5/24
(C) 1/12
(D) 1/6
(E) 1/4


Let R be the numbers of rubies in the bag,
we told that the selection is made without replacement in both cases ( selecting two diamonds or selecting two rubies)

Hence, we have : \(\frac{2}{3}*\frac{2R-1}{3R-1}=\frac{5}{12}\)

So, the number of diamonds in the bag is 3. Likewise, the number of rubies in the bag is 6 and the total of the gemstones is 9.

The probability of selecting two rubies from the bag without replacement is :

\(\frac{1}{3}*\frac{2}{8}=\frac{1}{12}\)

Answer : C



Looks like you got your diamonds and rubies mixed up :wink: though you got it right later



u are right navy81, thx :)

Hope this silly mistake had not confused anyone. Anyway, i think it's OK by now :-D
SVP
SVP
User avatar
Joined: 06 Sep 2013
Posts: 1507
Concentration: Finance
GMAT ToolKit User
Re: A certain bag of gemstones is composed of two-thirds  [#permalink]

Show Tags

New post 09 Jan 2014, 14:00
4
BG wrote:
A certain bag of gemstones is composed of two-thirds diamonds and one-third rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?

(A) 5/36
(B) 5/24
(C) 1/12
(D) 1/6
(E) 1/4


(d/d+r)(d-1/d+r-1) = 5/12

d = 2r

Therefore r = 3
d= 6

Probability of 2 rubies is

(3/9)(2/8) = 1/12

C it is
Intern
Intern
avatar
Joined: 29 Aug 2013
Posts: 12
Re: A certain bag of gemstones is composed of two-thirds  [#permalink]

Show Tags

New post 09 Jan 2014, 14:27
Can someone explain the

2/3 * (2R-1)/(3R-1)

part?
EMPOWERgmat Instructor
User avatar
V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 16310
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: A certain bag of gemstones is composed of two-thirds  [#permalink]

Show Tags

New post 03 Feb 2015, 21:53
2
1
Hi All,

We can solve this problem by TESTing VALUES. However, we have so much specific information, we CANNOT TEST random values. We have to use the information in the prompt to pick a logical number that matches all of the given "restrictions"

Here's what we have to work with:
1) Since the gems can be broken down into 2/3 diamonds and 1/3 rubies, the TOTAL must be a MULTIPLE of 3.
2) Since the probability of pulling 2 diamonds is 5/12, when we multiply the two individual probabilities, we MUST end with a denominator that is a multiple of 12 (so the fraction can be reduced to 5/12).

Let's start at "3" and work up....

If there are 3 gems, then we have 2 diamonds.
The probability of pulling 2 diamonds is (2/3)(1/2) = 2/6 which is NOT a match.

If there are 6 gems, then we have 4 diamonds.
The probability of pulling 2 diamonds is (4/6)(3/5) = 12/30.....30 cannot reduce to 12. This is NOT a match

If there are 9 gems, then we have 6 diamonds.
The probability of pulling 2 diamonds is (6/9)(5/8) = 5/12...This IS a MATCH

So we have....
Total= 9
Diamonds = 6
Rubies = 3

The question asks for the probability of selecting 2 rubies....

The probability of selecting the first ruby = (3/9)
The probability of selecting the second ruby = (2/8)
(3/9)(2/8) = 6/72 = 1/12

Final Answer:

GMAT assassins aren't born, they're made,
Rich
_________________
Contact Rich at: Rich.C@empowergmat.com
Image


The Course Used By GMAT Club Moderators To Earn 750+

souvik101990 Score: 760 Q50 V42 ★★★★★
ENGRTOMBA2018 Score: 750 Q49 V44 ★★★★★
Director
Director
User avatar
G
Joined: 26 Oct 2016
Posts: 594
Location: United States
Concentration: Marketing, International Business
Schools: HBS '19
GMAT 1: 770 Q51 V44
GPA: 4
WE: Education (Education)
Re: A certain bag of gemstones is composed of two-thirds  [#permalink]

Show Tags

New post 05 Jan 2017, 19:27
2
The simplest way to solve the problem is to recognize that the total number of gems in the bag must be a multiple of 3, since we have 2/3 diamonds and 1/3 rubies. If we had a total number that was not divisible by 3, we would not be able to divide the stones into thirds. Given this fact, we can test some multiples of 3 to see whether any fit the description in the question.
The smallest number of gems we could have is 6: 4 diamonds and 2 rubies (since we need at least 2 rubies). Is the probability of selecting two of these diamonds equal to 5/12?
4/6 × 3/5 = 12/30 = 2/5. Since this does not equal 5/12, this cannot be the total number of gems.
The next multiple of 3 is 9, which yields 6 diamonds and 3 rubies:
6/9 × 5/8 = 30/72 = 5/12. Since this matches the probability in the question, we know we have 6 diamonds and 3 rubies. Now we can figure out the probability of selecting two rubies:
3/9 × 2/8 = 6/72 = 1/12
The correct answer is C.
_________________
Thanks & Regards,
Anaira Mitch
Target Test Prep Representative
User avatar
V
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 9874
Location: United States (CA)
Re: A certain bag of gemstones is composed of two-thirds  [#permalink]

Show Tags

New post 08 Dec 2017, 10:27
BG wrote:
A certain bag of gemstones is composed of two-thirds diamonds and one-third rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?

(A) 5/36
(B) 5/24
(C) 1/12
(D) 1/6
(E) 1/4


We are given that the bag contains two-thirds diamonds and one-third rubies. We are also given that the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12.

Let’s represent the number of rubies in the bag by x. Since the number of diamonds is twice the number of rubies, the number of diamonds in the bag will be 2x.

The probability of choosing two diamonds from the bag, without replacement, can be represented in terms of x by (2x/3x)((2x - 1)/(3x - 1)).

We are also given that this probability is equal to 5/12. Thus:

(2x/3x)((2x - 1)/(3x - 1)) = 5/12

(4x^2 - 2x)/(9x^2 - 3x) = 5/12

Cross multiply to obtain:

48x^2 - 24x = 45x^2 - 15x

3x^2 - 9x = 0

3x(x - 3) = 0

From this equation, we obtain x = 0 or x = 3. Since we know the bag is not empty, x must equal 3, and thus there are 6 diamonds and 3 rubies in the bag. Now the probability of choosing two rubies from the bag, without replacement, can be calculated to be (3/9)(2/8) = (1/3)(1/4) = 1/12.

Alternate Solution:

We can let T = the total number of gems, (2/3)T = diamonds, and (1/3)T = rubies.

Since the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, we can create the following equation:

[(2/3)T/T] x [((2/3)T - 1)/(T - 1)] = 5/12

(2/3) x ((2/3)T - 1)/(T - 1) = 5/12

((2/3)T - 1)/(T - 1) = 5/8

Cross multiply, we have:

(16/3)T - 8 = 5T - 5

16T - 24 = 15T - 15

T = 9

We know that there are twice as many diamonds as rubies. Thus, there are 6 diamonds and 3 rubies, so the probability of selecting two rubies from the bag is:

3/9 x 2/8 = 1/3 x 1/4 = 1/12

Answer: C
_________________

Scott Woodbury-Stewart

Founder and CEO

Scott@TargetTestPrep.com
TTP - Target Test Prep Logo
197 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 14451
Re: A certain bag of gemstones is composed of two-thirds  [#permalink]

Show Tags

New post 25 Apr 2019, 22:02
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Bot
Re: A certain bag of gemstones is composed of two-thirds   [#permalink] 25 Apr 2019, 22:02
Display posts from previous: Sort by

A certain bag of gemstones is composed of two-thirds

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne