GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 18 Jul 2018, 19:21

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

A set S = { x, -8, -5, -4, 4, 6, 9, y } with elements arrang

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

4 KUDOS received
Intern
Intern
avatar
Joined: 05 Jun 2013
Posts: 5
GPA: 3.7
GMAT ToolKit User
A set S = { x, -8, -5, -4, 4, 6, 9, y } with elements arrang [#permalink]

Show Tags

New post 02 Jul 2013, 23:30
4
13
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

65% (01:28) correct 35% (01:45) wrong based on 475 sessions

HideShow timer Statistics

A set S = {x, -8, -5, -4, 4, 6, 9, y} with elements arranged in increasing order. If the median and the mean of the set are the same, what is the value of |x|-|y|?

(A) -1
(B) 0
(C) 1
(D) 2
(E) Cannot be determined.
Most Helpful Expert Reply
Expert Post
6 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 47084
Re: A set S = { x, -8, -5, -4, 4, 6, 9, y } with elements arrang [#permalink]

Show Tags

New post 02 Jul 2013, 23:39
6
6
A set S = {x, -8, -5, -4, 4, 6, 9, y} with elements arranged in increasing order. If the median and the mean of the set are the same, what is the value of |x|-|y|?

(A) -1
(B) 0
(C) 1
(D) 2
(E) Cannot be determined


The median of a set with even (8) terms is the average of two middle terms, thus \(median = \frac{-4+4}{2} = 0\).

\(mean = \frac{x - 8 - 5 - 4 + 4 + 6 + 9 + y}{8} = 0 = median\) --> \(2 + x + y = 0\) --> \(x + y = -2\).

Now, since the elements in the set are arranged in increasing order, then \(x<0\) and \(y>0\), so \(|x|-|y|=-x-y=-(x+y)=-(-2)=2\).

Answer: D.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

General Discussion
1 KUDOS received
Senior Manager
Senior Manager
avatar
B
Joined: 24 Aug 2009
Posts: 479
Schools: Harvard, Columbia, Stern, Booth, LSB,
Re: A set S = { x, -8, -5, -4, 4, 6, 9, y } with elements arrang [#permalink]

Show Tags

New post 02 Jul 2013, 23:42
1
1
A set S = {x, -8, -5, -4, 4, 6, 9, y} with elements arranged in increasing order. If the median and the mean of the set are the same, what is the value of |x|-|y|?
(A) -1
(B) 0
(C) 1
(D) 2
(E) Cannot be determined.

Median of the set = (-4+4)/2 = 0
As per statement, Mean of the set = 0

Mean of the set
|y|- |x| +19-17 = 0 (where x is negative n y is positive)
|y|- |x| = -2

So the absolute difference between two numbers is 2
Answer D
_________________

If you like my Question/Explanation or the contribution, Kindly appreciate by pressing KUDOS.
Kudos always maximizes GMATCLUB worth
-Game Theory

If you have any question regarding my post, kindly pm me or else I won't be able to reply

Expert Post
2 KUDOS received
GMAT Club Legend
GMAT Club Legend
User avatar
P
Joined: 16 Oct 2010
Posts: 8127
Location: Pune, India
Re: A set S = { x, -8, -5, -4, 4, 6, 9, y } with elements arrang [#permalink]

Show Tags

New post 02 Jul 2013, 23:51
2
1
vtran wrote:
A set S = {x, -8, -5, -4, 4, 6, 9, y} with elements arranged in increasing order. If the median and the mean of the set are the same, what is the value of |x|-|y|?

(A) -1
(B) 0
(C) 1
(D) 2
(E) Cannot be determined.



Alternatively, you can use the concept of deviation from mean to solve it.

Median is average of middle two terms = (-4 + 4)/2 = 0
So mean = 0 too.
Now notice the terms on either side of mean.
-4 is 4 less than 0 but 4 is 4 more so they balance out.
-5 is 5 less but 6 is 6 more so there is an extra positive 1.
-8 and 9 have an extra positive 1 too.
To get a mean of 0, x should have negative 2 more than y i.e. x = -12, y = 10 or x = -13, y = 11 etc.
In any case, |x|-|y| = 2

Check this post for more on this method: http://www.veritasprep.com/blog/2012/05 ... eviations/
_________________

Karishma
Private Tutor for GMAT
Contact: bansal.karishma@gmail.com

Expert Post
1 KUDOS received
EMPOWERgmat Instructor
User avatar
V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 11987
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
A set S = { x, -8, -5, -4, 4, 6, 9, y } with elements arrang [#permalink]

Show Tags

New post 12 Sep 2015, 16:13
1
Hi,

This question is built around a number of statistics concepts and you have to pay careful attention to how you organize your work.

The prompt gives us a number of Facts to work with:
1) We're given the following set of values: {X, -8, -5, -4, 4, 6, 9, Y}
2) We're told that they are in INCREASING order
3) We're told the Median and the Mean are the SAME

We're asked for the value of |X| - |Y|

Since there are 8 terms, the Median will equal the average of the 'middle two' terms. Those 'middle two' terms are -4 and 4, so the Median is 0 (and since the Median = the Mean, the overall average is 0). Since the overall average is 0, the sum of the 8 terms MUST be 0...

Adding up the terms, we have...
X + Y + 2

So, since X+Y+2 = 0....

X+Y = -2

At this point, since X and Y have an established relationship, we can use any pair of values that fits all of the facts...We can TEST VALUES to prove the answer....

IF....
X = -12
Y = 10

|-12| - |10| = +2

Final Answer:

GMAT assassins aren't born, they're made,
Rich
_________________

760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests Free
  Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/

***********************Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!***********************

1 KUDOS received
Manager
Manager
User avatar
G
Joined: 13 Jun 2012
Posts: 181
Location: United States
WE: Supply Chain Management (Computer Hardware)
GMAT ToolKit User
Re: A set S = { x, -8, -5, -4, 4, 6, 9, y } with elements arranged in incr [#permalink]

Show Tags

New post 12 Sep 2015, 16:33
1
This is what I did, we know Median which is 0 ( -4+ 4/2),. since Mean is same, it has to be 0. ( x, -8, -5, -4, 4, 6, 9, y ) so how will it be 0. if x, -8, -5, -4 = 4, 6, 9, y .

hence the number is x -12 and and y 10. D is the answer.
Expert Post
Senior Manager
Senior Manager
User avatar
Joined: 20 Aug 2015
Posts: 392
Location: India
GMAT 1: 760 Q50 V44
Re: A set S = { x, -8, -5, -4, 4, 6, 9, y } with elements arrang [#permalink]

Show Tags

New post 13 Sep 2015, 09:54
shasadou wrote:
A set S = { x, -8, -5, -4, 4, 6, 9, y } with elements arranged in increasing order. If the median and the mean of the set are the same, what is the value of |x|-|y|?

A. -1
B. 0
C. 1
D. 2
E. Cannot be determined.


S = { x, -8, -5, -4, 4, 6, 9, y } with elements arranged in increasing order
This means x < 0 and y > 0.

The median of a series with even numbers is the average of the middle two numbers
Hence the median here is (-4 + 4)/2 = 0

Mean = sum of all the terms/ no. of terms
(x - 8 -5 -5 +4 +6 +9 + y)/8 = 0 (Given that median = mean)

Hence, x + y = 2
We need to find |x| - |y|
and we know that x < 0 and y > 0

Opening the modulus with appropriate signs:
Modulus of any number is the absolute value of the number, or simply the positive value
Always remember that the modulus of a negative number opens with a negative sign and of a positive number opens with a positive sign


We have ,
|x| - |y| = -x - y = -(x + y) = -(-2) = 2
Hence Option D
Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Aug 2009
Posts: 6235
Re: A set S = { x, -8, -5, -4, 4, 6, 9, y } with elements arranged in incr [#permalink]

Show Tags

New post 02 Apr 2016, 07:51
1
1
shasadou wrote:
A set S = { x, -8, -5, -4, 4, 6, 9, y } with elements arranged in increasing order. If the median and the mean of the set are the same, what is the value of |x|-|y|?

A. -1
B. 0
C. 1
D. 2
E. Cannot be determined.


Hi,
the set is
{ x, -8, -5, -4, 4, 6, 9, y }
median is the center of middle 2 numbers as number of elements in set is EVEN..
median= (-4+4)/2=0..
it is given MEAN = MEDIAN..
so MEDIAN= MEAN = { x +(-8)+( -5)+( -4)+ 4+ 6+ 9+ y }/8 = 0
\(\frac{(x+y+2)}{8}=0\)..
or x+y+2=0..
x= -(y+2)
|x|=(y+2)..
so
|x|-|y|= |y+2|-|y|= y+2-y=2
D
_________________

1) Absolute modulus : http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
2)Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html
3) effects of arithmetic operations : https://gmatclub.com/forum/effects-of-arithmetic-operations-on-fractions-269413.html


GMAT online Tutor

BSchool Forum Moderator
User avatar
V
Joined: 26 Feb 2016
Posts: 2941
Location: India
GPA: 3.12
Premium Member
Re: A set S = { x, -8, -5, -4, 4, 6, 9, y } with elements arranged [#permalink]

Show Tags

New post 14 Oct 2016, 00:13
We know that the median in this set is 0
If the mean of this set must be equal to 0,
the sum of elements in the set must always be zero

Adding the terms, we get x-17+19+y = 0
This is only possible when -x = 2+y eg, if y = 10, x=-12
Since x will always bme greater than y & we will have a difference of 2.

mod(x) - mod(y) = 2 always(Option B)
_________________

You've got what it takes, but it will take everything you've got

Intern
Intern
avatar
B
Joined: 17 Nov 2016
Posts: 26
Re: A set S = { x, -8, -5, -4, 4, 6, 9, y } with elements arrang [#permalink]

Show Tags

New post 04 Mar 2018, 16:16
Quote:
Now, since the elements in the set are arranged in increasing order, then x<0x<0 and y>0y>0, so |x|−|y|=−x−y=−(x+y)=−(−2)=2|x|−|y|=−x−y=−(x+y)=−(−2)=2.


Can you please elaborate more on how you came up with -x-y from |x|−|y|?
Intern
Intern
avatar
B
Joined: 15 Oct 2016
Posts: 31
Re: A set S = { x, -8, -5, -4, 4, 6, 9, y } with elements arrang [#permalink]

Show Tags

New post 04 Mar 2018, 19:59
Zoser wrote:
Quote:
Now, since the elements in the set are arranged in increasing order, then x<0x<0 and y>0y>0, so |x|−|y|=−x−y=−(x+y)=−(−2)=2|x|−|y|=−x−y=−(x+y)=−(−2)=2.


Can you please elaborate more on how you came up with -x-y from |x|−|y|?


For x<0, |x|= -x because anything thatches out of || has to be a non negative number (and we know that x is negative).
Since, y is positive,, |y| = y

However, a more intuitive way to look at this problem is that it is asking you for the difference of magnitudes of x and y.

We know that, the remaining elements (except x and y) add upto 2 and to nullify the same you need the magnitude of X greater than that of Y by 2 units.
Expert Post
Top Contributor
CEO
CEO
User avatar
P
Joined: 12 Sep 2015
Posts: 2633
Location: Canada
Re: A set S = { x, -8, -5, -4, 4, 6, 9, y } with elements arrang [#permalink]

Show Tags

New post 25 May 2018, 18:26
Top Contributor
vtran wrote:
A set S = {x, -8, -5, -4, 4, 6, 9, y} with elements arranged in increasing order. If the median and the mean of the set are the same, what is the value of |x|-|y|?

(A) -1
(B) 0
(C) 1
(D) 2
(E) Cannot be determined.


First off, the question tells us that the numbers are arranged in ascending order.
So, we know that x ≤ -8, and y ≥ 9

There are 8 elements in the set. So, the median = the average of the two middlemost values.
Here, the two middlemost values are -4 and 4
So, the median = (-4 + 4)/2 = 0/2 = 0

Since the median and the mean of the set are EQUAL, we know that the mean is also 0

That is, [x + (-8) + (-5) + (-4) + 4 + 6 + 9 + y]/8 = 0
Multiply both sides by 8 to get: x + (-8) + (-5) + (-4) + 4 + 6 + 9 + y = 0
Simplify: x + y + 2 = 0
This means x + y = -2

So, here's what we know:
x + y = -2
x ≤ -8
y ≥ 9

Let's find some values of x and y and see where this leads us....

x = -12 and y = 10
In this case, |x|-|y|= |-12|-|10| = 12 - 10 = 2

x = -13 and y = 11
In this case, |x|-|y|= |-13|-|11| = 13 - 11 = 2

x = -12.5 and y = 10.5
In this case, |x|-|y|= |-12.5|-|10.5| = 12.5 - 10.5 = 2

x = -100 and y = 98
In this case, |x|-|y|= |-100|-|98| = 100 - 98 = 2

As we can see, the answer will always be 2

Answer: D

RELATED VIDEO FROM OUR COURSE

_________________

Brent Hanneson – Founder of gmatprepnow.com

Image

Re: A set S = { x, -8, -5, -4, 4, 6, 9, y } with elements arrang   [#permalink] 25 May 2018, 18:26
Display posts from previous: Sort by

A set S = { x, -8, -5, -4, 4, 6, 9, y } with elements arrang

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Events & Promotions

PREV
NEXT


GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.