GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 23 Sep 2018, 01:33

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Devil's Dozen!!!

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49303
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 23 May 2014, 05:14
PathFinder007 wrote:
Bunuel wrote:
11. Alice has $15, which is enough to buy 11 muffins and 7 brownies, is $45 enough to buy 27 muffins and 27 brownies?

700+ question.

Given: \(11m+7b\leq{15}\), where \(m\) and \(b\) are prices of one muffin and one brownie respectively.
Question: is \(27m+27b\leq{45}\)? --> \(9m+9b\leq{15}\). Question basically asks whether we can substitute 2 muffins with 2 brownies.

Now if \(m>b\) we can easily substitute 2 muffins with 2 brownies (since \(2m\) will be more than \(2b\)). But if \(m<b\) we won't know this for sure.

But consider the case when we are told that we can substitute 3 muffins with 3 brownies. In both cases (\(m>b\) or \(m<b\)) it would mean that we can substitute 2 (so less than 3) muffins with 2 brownies, but again we won't be sure whether we can substitute 4 (so more than 3) muffins with 4 brownies.

(1) $15 is enough to buy 7 muffins and 11 brownies --> \(7m+11b\leq{15}\): we can substitute 4 muffins with 4 brownies, so according to above we can surely substitute 2 muffins with 2 brownies. Sufficient.
(1) $15 is enough to buy 10 muffins and 8 brownies --> \(10m+8b\leq{15}\): we can substitute 1 muffin with 1 brownie, so according to above this is does not ensure that we can substitute 2 muffins with 2 brownies. Not sufficient.

Answer: A.


Hi Bunnel,

I just want to know why statement 2 is not sufficient. following is my logic

from question 11m+7b =15

st1- 7m+11b = 15

subtract st2 from 1

4m-4b = 0
m=b

so in question we can say 18b = 15
b=15/18=5/6. using this we can get the price for 27m and 27b

now same i can get from st2 then why this is not sufficient?

please clarify

Thanks.


There is a huge difference between \(11m+7b\leq{15}\) and \(11m+7={15}\). "Enough" should be translated as \(\leq\) only.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 06 May 2014
Posts: 7
Concentration: Marketing, Technology
GMAT 1: 660 Q49 V31
GMAT ToolKit User
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 02 Jul 2014, 22:20
Bunuel wrote:
priyavenugopal wrote:
Sure. Thanks. I just tried it in the vry usual algebraic eqn solving way.

Given,
From qn stem - 11m + 7b = 15 (i took the 'enough' word as 'equal to'..as the 'enough' keyword can be rephrased as '<=', i thought that,considering the max limit '=' would do in such price lmt case..not sure, whthr thrs any trap thr..)
From (1) stmt - 7m + 11b = 15
From (2) stmt - 10m + 8b = 15
Solving qn stem n stmt 1 eqns, got m and b as 5/6 (didnt get an int val thou..not sure whether thrs a trap)
Solving qn stem n stmt 2 eqns, got m and b as 5/6

Having m and b values, we can find whthr 45$ is enough to buy 27m + 27b or not. (i.e. applying m n b in eqn 27m + 27b = 45 => 2 * 27 * 5/6 = 45). So, arrived at D.


Not even to analyze the rest of it, I must say that there is a huge difference between \(11m+7b\leq{15}\) and \(11m+7={15}\). You can not just write = sing instead of <= just because it's more convenient and "enough" should be translated as <= only.


Bunuel
the statement says 15$ is enough, so it implies <= 15$ , consider max situation that it takes 15$ to buy 10m and 8b, which implies 45$ is sufficient . Can we not imply that for any amount less than 15$ , the solution will hold?.

Please help
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49303
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 03 Jul 2014, 05:57
ayushee01 wrote:
Bunuel wrote:
priyavenugopal wrote:
Sure. Thanks. I just tried it in the vry usual algebraic eqn solving way.

Given,
From qn stem - 11m + 7b = 15 (i took the 'enough' word as 'equal to'..as the 'enough' keyword can be rephrased as '<=', i thought that,considering the max limit '=' would do in such price lmt case..not sure, whthr thrs any trap thr..)
From (1) stmt - 7m + 11b = 15
From (2) stmt - 10m + 8b = 15
Solving qn stem n stmt 1 eqns, got m and b as 5/6 (didnt get an int val thou..not sure whether thrs a trap)
Solving qn stem n stmt 2 eqns, got m and b as 5/6

Having m and b values, we can find whthr 45$ is enough to buy 27m + 27b or not. (i.e. applying m n b in eqn 27m + 27b = 45 => 2 * 27 * 5/6 = 45). So, arrived at D.


Not even to analyze the rest of it, I must say that there is a huge difference between \(11m+7b\leq{15}\) and \(11m+7={15}\). You can not just write = sing instead of <= just because it's more convenient and "enough" should be translated as <= only.


Bunuel
the statement says 15$ is enough, so it implies <= 15$ , consider max situation that it takes 15$ to buy 10m and 8b, which implies 45$ is sufficient . Can we not imply that for any amount less than 15$ , the solution will hold?.

Please help


$15 is enough to buy 10 muffins and 8 brownies.
15*3=$45 is enough to buy 10*3=30 muffins and 8*3=24 brownies.

But this is not sufficient to say whether $45 enough to buy 27 muffins and 27 brownies.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
Joined: 13 Aug 2012
Posts: 103
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 18 Aug 2014, 08:18
Bunuel wrote:
4. Of the 58 patients of Vertigo Hospital, 45 have arachnophobia. How many of the patients have acrophobia?

Tricky question.

(1) The number of patients of Vertigo Hospital who have both arachnophobia and acrophobia is the same as the number of patients who have neither arachnophobia nor acrophobia. Use double-set matrix:
Image
As you can see # of patients who has acrophobia is 58-45=13. Sufficient.

(2) 32 patients of Vertigo Hospital have arachnophobia but not acrophobia. Clearly insufficient.

Answer: A.

Hi Bunuel, I don't understand how St 2 is clearly insufficient?
If we do it via venn diagram method, we know that a+b+c = 58
and we know from st 2, that a=32, so b=13, thus c=0.
But then from st 1 we get c = 13.
Where am I going wrong?
Attachments

sets.png
sets.png [ 3.34 KiB | Viewed 1340 times ]

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49303
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 18 Aug 2014, 10:08
mahendru1992 wrote:
Bunuel wrote:
4. Of the 58 patients of Vertigo Hospital, 45 have arachnophobia. How many of the patients have acrophobia?

Tricky question.

(1) The number of patients of Vertigo Hospital who have both arachnophobia and acrophobia is the same as the number of patients who have neither arachnophobia nor acrophobia. Use double-set matrix:
Image
As you can see # of patients who has acrophobia is 58-45=13. Sufficient.

(2) 32 patients of Vertigo Hospital have arachnophobia but not acrophobia. Clearly insufficient.

Answer: A.

Hi Bunuel, I don't understand how St 2 is clearly insufficient?
If we do it via venn diagram method, we know that a+b+c = 58
and we know from st 2, that a=32, so b=13, thus c=0.
But then from st 1 we get c = 13.
Where am I going wrong?


There might be a group of patients who has neither arachnophobia nor acrophobia. So, it should be a + b + c + neither = 58.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
Joined: 13 Aug 2012
Posts: 103
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 18 Aug 2014, 10:22
Bunuel wrote:
mahendru1992 wrote:
Bunuel wrote:
4. Of the 58 patients of Vertigo Hospital, 45 have arachnophobia. How many of the patients have acrophobia?

Tricky question.

(1) The number of patients of Vertigo Hospital who have both arachnophobia and acrophobia is the same as the number of patients who have neither arachnophobia nor acrophobia. Use double-set matrix:
Image
As you can see # of patients who has acrophobia is 58-45=13. Sufficient.

(2) 32 patients of Vertigo Hospital have arachnophobia but not acrophobia. Clearly insufficient.

Answer: A.

Hi Bunuel, I don't understand how St 2 is clearly insufficient?
If we do it via venn diagram method, we know that a+b+c = 58
and we know from st 2, that a=32, so b=13, thus c=0.
But then from st 1 we get c = 13.
Where am I going wrong?


There might be a group of patients who has neither arachnophobia nor acrophobia. So, it should be a + b + c + neither = 58.

Okay but b+c=13, D can still be the answer? The question is asking us for b+c
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49303
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 18 Aug 2014, 10:29
mahendru1992 wrote:
Bunuel wrote:
mahendru1992 wrote:
4. Of the 58 patients of Vertigo Hospital, 45 have arachnophobia. How many of the patients have acrophobia?

Tricky question.

(1) The number of patients of Vertigo Hospital who have both arachnophobia and acrophobia is the same as the number of patients who have neither arachnophobia nor acrophobia. Use double-set matrix:
Image
As you can see # of patients who has acrophobia is 58-45=13. Sufficient.

(2) 32 patients of Vertigo Hospital have arachnophobia but not acrophobia. Clearly insufficient.

Answer: A.

Hi Bunuel, I don't understand how St 2 is clearly insufficient?
If we do it via venn diagram method, we know that a+b+c = 58
and we know from st 2, that a=32, so b=13, thus c=0.
But then from st 1 we get c = 13.
Where am I going wrong?


There might be a group of patients who has neither arachnophobia nor acrophobia. So, it should be a + b + c + neither = 58.

Okay but b+c=13, D can still be the answer? The question is asking us for b+c


The question asks for the number of patients who has acrophobia. Yellow box in matrix in my solution.

IF the number of patients with neither arachnophobia nor acrophobia is 0, then there will be 26 patients with acrophobia but IF the number of patients with neither arachnophobia nor acrophobia is 13, then there will be 13 patients with acrophobia.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 04 Oct 2014
Posts: 5
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 22 Oct 2014, 09:43
hey bunuel, are we assuming that y=1 in question 12? If so, why? I saw that A was not sufficient but chose C because I thought we could simply plug in different values for X (36, 81) so that y could be a number of different fractions
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49303
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 22 Oct 2014, 09:49
alexanthony813 wrote:
12. If x>0 and xy=z, what is the value of yz?

(1) \(x^2*y=3\). If \(x=1\) then \(y=z=3\) and \(yz=9\) but if \(x=3\) then \(y=\frac{1}{3}\), \(z=1\) and \(yz=\frac{1}{3}\). Not sufficient.

(2) \(\sqrt{x*y^2}=3\) --> \(x*y^2=9\) --> \((xy)*y=9\) --> since \(xy=z\) then: \(z*y=9\). Sufficient.

Answer: B.

hey bunuel, are we assuming that y=1 in question 12? If so, why? I saw that A was not sufficient but chose C because I thought we could simply plug in different values for X (36, 81) so that y could be a number of different fractions


We are not assuming that y is 1.

From (2) we have that \((xy)*y=9\) and from the stem we know that \(xy=z\). Now, simply substitute xy with z in \((xy)*y=9\) to get \(z*y=9\).

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
S
Joined: 27 Aug 2014
Posts: 112
Concentration: Finance, Strategy
GPA: 3.9
WE: Analyst (Energy and Utilities)
CAT Tests
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 06 Nov 2014, 14:15
Dear Bunuel,

I have a question to your solution on the following problem:

2. If n is a positive integer and p is a prime number, is p a factor of n!?

you specify for statement 2 the following sentence:

(2) p is a factor of (n+2)!/n! --> \frac{(n+2)!}{n!}=(n+1)(n+2) --> if n=2 then (n+1)(n+2)=12 and for p=2 then answer will be YES but for p=3 the answer will be NO. Not sufficient.

now consider (n+2)!/n!, this can be reduced to (n+1)(n+2), for n is odd, the expression is even, further for n is even, the expression is even again.
the statement specifies that p is a factor of an even number and is prime, thus p should be even and the only even prime number is 2. How did you consider p= 3? in your solution.

Thanks in advance,
Sant
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49303
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 07 Nov 2014, 04:28
1
santorasantu wrote:
Dear Bunuel,

I have a question to your solution on the following problem:

2. If n is a positive integer and p is a prime number, is p a factor of n!?

you specify for statement 2 the following sentence:

(2) p is a factor of (n+2)!/n! --> \frac{(n+2)!}{n!}=(n+1)(n+2) --> if n=2 then (n+1)(n+2)=12 and for p=2 then answer will be YES but for p=3 the answer will be NO. Not sufficient.

now consider (n+2)!/n!, this can be reduced to (n+1)(n+2), for n is odd, the expression is even, further for n is even, the expression is even again.
the statement specifies that p is a factor of an even number and is prime, thus p should be even and the only even prime number is 2. How did you consider p= 3? in your solution.

Thanks in advance,
Sant


The red part is not correct. An even number can have an odd factor. For example, 12 is even and it has an odd factor 3.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
User avatar
Status: A mind once opened never loses..!
Joined: 05 Mar 2015
Posts: 214
Location: India
MISSION : 800
WE: Design (Manufacturing)
GMAT ToolKit User Premium Member
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 18 Mar 2015, 00:58
Bunuel wrote:
10. There is at least one viper and at least one cobra in Pandora's box. How many cobras are there?

Quite tricky.

(1) There are total 99 snakes in Pandora's box. Clearly insufficient.

(2) From any two snakes from Pandora's box at least one is a viper. Since from ANY two snakes one is a viper then there can not be 2 (or more) cobras and since there is at least one cobra then there must be exactly one cobra in the box. Sufficient.

Answer: B.


Hi
plz explain
Question says atleast i viper and 1 cobra > This means that dr are atleat 1 cobra and 1 viper but it does not mean dr are just two of these. dr can be 10 snakes and 1 is viper and 1 cobra [according to thr question ATLEAST] or may be 6 cobra and 4 viper.
Now STATEMENT 2 states that for every i viper dr is 1 cobra..!!!
Now what if dr are 10 cobras and 10 viper
Question says atleast one, it can be more than 1 but minimum 1 cobra and i viper mus be dr..!!!
_________________

Thank you

+KUDOS

> I CAN, I WILL <

Math Expert
User avatar
V
Joined: 02 Aug 2009
Posts: 6800
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 18 Mar 2015, 01:42
dpo28 wrote:
Bunuel wrote:
10. There is at least one viper and at least one cobra in Pandora's box. How many cobras are there?

Quite tricky.

(1) There are total 99 snakes in Pandora's box. Clearly insufficient.

(2) From any two snakes from Pandora's box at least one is a viper. Since from ANY two snakes one is a viper then there can not be 2 (or more) cobras and since there is at least one cobra then there must be exactly one cobra in the box. Sufficient.

Answer: B.


Hi
plz explain
Question says atleast i viper and 1 cobra > This means that dr are atleat 1 cobra and 1 viper but it does not mean dr are just two of these. dr can be 10 snakes and 1 is viper and 1 cobra [according to thr question ATLEAST] or may be 6 cobra and 4 viper.
Now STATEMENT 2 states that for every i viper dr is 1 cobra..!!!
Now what if dr are 10 cobras and 10 viper
Question says atleast one, it can be more than 1 but minimum 1 cobra and i viper mus be dr..!!!


hi,
the reason there is only one cobra byu statement 2....
if you pick 2 snakes atleast one is viper...
say as u are saying there are two cobra and 8 viper.. then there can be a chance that these two cobras are picked up , but the statement ll tells us atleast one is viper..
so this statement will not be true... but we know this statement is true, so we can have only one cobra..
and when we pick up two snakes it could be two vipers or one viper and one cobra...
hope it helped
_________________

1) Absolute modulus : http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
2)Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html
3) effects of arithmetic operations : https://gmatclub.com/forum/effects-of-arithmetic-operations-on-fractions-269413.html


GMAT online Tutor

Manager
Manager
User avatar
Status: A mind once opened never loses..!
Joined: 05 Mar 2015
Posts: 214
Location: India
MISSION : 800
WE: Design (Manufacturing)
GMAT ToolKit User Premium Member
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 18 Mar 2015, 02:39
chetan2u wrote:
dpo28 wrote:
Bunuel wrote:
10. There is at least one viper and at least one cobra in Pandora's box. How many cobras are there?

Quite tricky.

(1) There are total 99 snakes in Pandora's box. Clearly insufficient.

(2) From any two snakes from Pandora's box at least one is a viper. Since from ANY two snakes one is a viper then there can not be 2 (or more) cobras and since there is at least one cobra then there must be exactly one cobra in the box. Sufficient.

Answer: B.


Hi
plz explain
Question says atleast i viper and 1 cobra > This means that dr are atleat 1 cobra and 1 viper but it does not mean dr are just two of these. dr can be 10 snakes and 1 is viper and 1 cobra [according to thr question ATLEAST] or may be 6 cobra and 4 viper.
Now STATEMENT 2 states that for every i viper dr is 1 cobra..!!!
Now what if dr are 10 cobras and 10 viper
Question says atleast one, it can be more than 1 but minimum 1 cobra and i viper mus be dr..!!!


hi,
the reason there is only one cobra byu statement 2....
if you pick 2 snakes atleast one is viper...
say as u are saying there are two cobra and 8 viper.. then there can be a chance that these two cobras are picked up , but the statement ll tells us atleast one is viper..
so this statement will not be true... but we know this statement is true, so we can have only one cobra..
and when we pick up two snakes it could be two vipers or one viper and one cobra...
hope it helped


Hi chetan2u
Thanks for the reply but am not able to get it
The questions asks the no of cobras right..!!
and for each viper dr is one cobra. Thn dr must be an equal no of both of them. But we cannot sat what's the number.
This is where am confused...!! ?
I know i sound silly but sometimes your are stuck at a point in some questions..!
_________________

Thank you

+KUDOS

> I CAN, I WILL <

Math Expert
User avatar
V
Joined: 02 Aug 2009
Posts: 6800
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 18 Mar 2015, 03:41
dpo28 wrote:
[quote="chetan2u"

hi,
the reason there is only one cobra byu statement 2....
if you pick 2 snakes atleast one is viper...
say as u are saying there are two cobra and 8 viper.. then there can be a chance that these two cobras are picked up , but the statement ll tells us atleast one is viper..
so this statement will not be true... but we know this statement is true, so we can have only one cobra..
and when we pick up two snakes it could be two vipers or one viper and one cobra...
hope it helped


Hi chetan2u
Thanks for the reply but am not able to get it
The questions asks the no of cobras right..!!
and for each viper dr is one cobra. Thn dr must be an equal no of both of them. But we cannot sat what's the number.
This is where am confused...!! ?
I know i sound silly but sometimes your are stuck at a point in some questions..![/quote]


hi, the question never tells us that there is one cobra for each viper....
it says there are atleast one cobra and one viper...
so it could be 1 cobra and 10 viper or 1 viper and 10 cobras or 10 viper and 100 cobras....

statement B the statement ll tells us atleast one is viper..
so for more than one cobra, atleast one viper in two snakes will not stand. it is possible to have both cobra if the cobras are more than 2 ... and this statement will not be true... but we know this statement is true, so we can have only one cobra..and when we pick up two snakes it could be two vipers or one viper and one cobra

_________________

1) Absolute modulus : http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
2)Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html
3) effects of arithmetic operations : https://gmatclub.com/forum/effects-of-arithmetic-operations-on-fractions-269413.html


GMAT online Tutor

Intern
Intern
avatar
Joined: 06 Jul 2015
Posts: 8
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 28 Sep 2015, 11:00
Bunuel wrote:
mithun2vrs wrote:
Bunuel wrote:
10. There is at least one viper and at least one cobra in a Pandora's box. How many cobras are there?

Quite tricky.

(1) There are total 99 snakes in Pandora's box. Clearly insufficient.

(2) From any two snakes from Pandora's box at least one is a viper. Since from ANY two snakes one is a viper then there can not be 2 (or more) cobras and since there is at least one cobra then there must be exactly one cobra in the box. Sufficient.

Answer: B.


How do we know that there are no other varieties of snakes other than cobra and viper. This is precisely why I chose E.


Answer to the question is B, not E.

If there is some other snake, then group of {other, cobra} will be possible and the statement (2) will be violated (basically the possibility of other variety of snake is ruled out by the same logic as the possibility of second cobra).

Hope it's clear.



Dear,
How do we know that there are only 2 snakes in the box? In the statement 2, it says " From any two snakes from Pandora's box at least one is a viper.". Doesn't it mean that when picking any 2 snakes out of more numbers of the snakes? Does it imply that there are only two snakes in the box?

Thanks!
Regards
Andy
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49303
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 28 Sep 2015, 22:55
andy2whang wrote:
Bunuel wrote:
Bunuel wrote:
10. There is at least one viper and at least one cobra in a Pandora's box. How many cobras are there?

Quite tricky.

(1) There are total 99 snakes in Pandora's box. Clearly insufficient.

(2) From any two snakes from Pandora's box at least one is a viper. Since from ANY two snakes one is a viper then there can not be 2 (or more) cobras and since there is at least one cobra then there must be exactly one cobra in the box. Sufficient.

Answer: B.



Answer to the question is B, not E.

If there is some other snake, then group of {other, cobra} will be possible and the statement (2) will be violated (basically the possibility of other variety of snake is ruled out by the same logic as the possibility of second cobra).

Hope it's clear.



Dear,
How do we know that there are only 2 snakes in the box? In the statement 2, it says " From any two snakes from Pandora's box at least one is a viper.". Doesn't it mean that when picking any 2 snakes out of more numbers of the snakes? Does it imply that there are only two snakes in the box?

Thanks!
Regards
Andy


We don't know whether there is only 2 snakes in the box. All we know from the second statement is that there must be one cobra and more than or equal to 1 vipers.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
B
Joined: 21 Feb 2017
Posts: 77
GMAT ToolKit User
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 04 Jun 2017, 05:35
Bunuel wrote:
6. Is the perimeter of triangle with the sides a, b and c greater than 30?

700+ question.

(1) a-b=15. Must know for the GMAT: the length of any side of a triangle must be larger than the positive difference of the other two sides, but smaller than the sum of the other two sides. So, a+b>c>15 --> a+b+c>30. Sufficient.

(2) The area of the triangle is 50. For a given perimeter equilateral triangle has the largest area. Now, if the perimeter were equal to 30 then it would have the largest area if it were equilateral. Let's find what this area would be: \(Area_{equilateral}=s^2*\frac{\sqrt{3}}{4}=(\frac{30}{3})^2*\frac{\sqrt{3}}{4}=25*\sqrt{3}<50\). Since even equilateral triangle with perimeter of 30 can not produce the area of 50, then the perimeter must be more that 30. Sufficient.

Answer: D.


hi Bunuel,
I didn't get your point mentioned in "For a given perimeter equilateral triangle has the largest area." because in statement B nothing is mentioned about type of triangle. Also please correct me if I am wrong for the statement "can't we do like this if we are assuming triangle as equilateral: (50= sqrt of 3 * a^2 ) / 4 and find what is a? Then a+a+a will give definite answer. So B is also sufficient to answer this question."

Thanks.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49303
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 04 Jun 2017, 06:16
goalMBA1990 wrote:
Bunuel wrote:
6. Is the perimeter of triangle with the sides a, b and c greater than 30?

700+ question.

(1) a-b=15. Must know for the GMAT: the length of any side of a triangle must be larger than the positive difference of the other two sides, but smaller than the sum of the other two sides. So, a+b>c>15 --> a+b+c>30. Sufficient.

(2) The area of the triangle is 50. For a given perimeter equilateral triangle has the largest area. Now, if the perimeter were equal to 30 then it would have the largest area if it were equilateral. Let's find what this area would be: \(Area_{equilateral}=s^2*\frac{\sqrt{3}}{4}=(\frac{30}{3})^2*\frac{\sqrt{3}}{4}=25*\sqrt{3}<50\). Since even equilateral triangle with perimeter of 30 can not produce the area of 50, then the perimeter must be more that 30. Sufficient.

Answer: D.


hi Bunuel,
I didn't get your point mentioned in "For a given perimeter equilateral triangle has the largest area." because in statement B nothing is mentioned about type of triangle. Also please correct me if I am wrong for the statement "can't we do like this if we are assuming triangle as equilateral: (50= sqrt of 3 * a^2 ) / 4 and find what is a? Then a+a+a will give definite answer. So B is also sufficient to answer this question."

Thanks.


From (2) we have that if even an equilateral triangle with perimeter of 30 cannot have the area of 50, then the perimeter must be more that 30. So, if even an equilateral triangle with perimeter of 30 cannot have the area of 50, then the perimeter must be more that 30.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Math Expert
User avatar
V
Joined: 02 Aug 2009
Posts: 6800
Re: Devil's Dozen!!!  [#permalink]

Show Tags

New post 05 Jun 2017, 03:33
1
7. Set A consists of k distinct numbers. If n numbers are selected from the set one-by-one, where n<=k, what is the probability that numbers will be selected in ascending order?[/b]

(1) Set A consists of 12 even consecutive integers;
(2) n=5.


Hi,

The distinct number selected can have ONLY one way in which they are in ascending order or for that matter, one way in descending order.
1)Since n <=k and we are selecting n integers, selection can be n! Ways..

2) out of this, only one will be in ascending order.

So PROBABILITY is 1/n!

So we are looking for value of n..
Statement II gives us value of n, hence sufficient

Ans B
_________________

1) Absolute modulus : http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
2)Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html
3) effects of arithmetic operations : https://gmatclub.com/forum/effects-of-arithmetic-operations-on-fractions-269413.html


GMAT online Tutor

GMAT Club Bot
Re: Devil's Dozen!!! &nbs [#permalink] 05 Jun 2017, 03:33

Go to page   Previous    1   2   3   4   5    Next  [ 81 posts ] 

Display posts from previous: Sort by

Devil's Dozen!!!

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Events & Promotions

PREV
NEXT


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.