Hi
Bunuel! I am a bit confused for the case n=1.
If n=1 then statement one equates to 5 and statement 2 equates to 6. Hence the possible values of P are 5,2,3. none of which is a factor of 1?
If each statement is true, then P should then be a prime factor of 5 and either 2 or 3, but that's impossible?
Will be grateful if you could clarify. Thank you.
Bunuel wrote:
2. If n is a positive integer and p is a prime number, is p a factor of n!?
(1) p is a factor of (n+2)!-n! --> if \(n=2\) then \((n+2)!-n!=22\) and for \(p=2\) then answer will be YES but for \(p=11\) the answer will be NO. Not sufficient.
(2) p is a factor of (n+2)!/n! --> \(\frac{(n+2)!}{n!}=(n+1)(n+2)\) --> if \(n=2\) then \((n+1)(n+2)=12\) and for \(p=2\) then answer will be YES but for \(p=3\) the answer will be NO. Not sufficient.
(1)+(2) \((n+2)!-n!=n!((n+1)(n+2)-1)\). Now, \((n+1)(n+2)-1\) and \((n+1)(n+2)\) are consecutive integers. Two consecutive integers are co-prime, which means that they don't share ANY common factor but 1. For example 20 and 21 are consecutive integers, thus only common factor they share is 1. So, as from (2) \(p\) is a factor of \((n+1)(n+2)\) then it can not be a factor of \((n+1)(n+2)-1\), thus in order \(p\) to be a factor of \(n!*((n+1)(n+2)-1)\), from (1), then it should be a factor of the first multiple of this expression: \(n!\). Sufficient.
Answer: C.