Last visit was: 28 Mar 2025, 03:20 It is currently 28 Mar 2025, 03:20
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
megafan
Joined: 28 May 2009
Last visit: 15 Oct 2017
Posts: 137
Own Kudos:
896
 [26]
Given Kudos: 91
Location: United States
Concentration: Strategy, General Management
GMAT Date: 03-22-2013
GPA: 3.57
WE:Information Technology (Consulting)
Posts: 137
Kudos: 896
 [26]
3
Kudos
Add Kudos
23
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 28 March 2025
Posts: 100,116
Own Kudos:
Given Kudos: 92,748
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 100,116
Kudos: 711,471
 [13]
9
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
General Discussion
User avatar
DoItRight
Joined: 18 Feb 2013
Last visit: 31 Mar 2015
Posts: 21
Own Kudos:
85
 [3]
Given Kudos: 14
GMAT 1: 710 Q49 V38
Products:
GMAT 1: 710 Q49 V38
Posts: 21
Kudos: 85
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
User avatar
DharLog
Joined: 26 Jun 2017
Last visit: 04 Mar 2019
Posts: 316
Own Kudos:
335
 [2]
Given Kudos: 334
Location: Russian Federation
Concentration: General Management, Strategy
WE:Information Technology (Other)
Posts: 316
Kudos: 335
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
gmatexam439
For any integer m greater than 1, $m denotes the product of all the integers from 1 to m, inclusive. How many prime numbers are there between $7 + 2 and $7 + 10, inclusive?

(A) None
(B) One
(C) Two
(D) Three
(E) Four

$7 = 7*6*5*4*3*2*1=5040.
So we need to check all numbers between 5042 and 5050.
All even numbers are divisable by 2.
So what about 5043, 5045, 5047, 5049.
5045 is divisable by 5.
5043 and 5049 are divisable by 3, because the sum of all digits is divisable by 3.
And the last one - 5047. We can easily find that it is divisable by 7.
So the answer is A.
avatar
NamVu1990
Joined: 18 Aug 2017
Last visit: 10 Sep 2017
Posts: 25
Own Kudos:
58
 [2]
Given Kudos: 17
GMAT 1: 670 Q49 V33
GMAT 1: 670 Q49 V33
Posts: 25
Kudos: 58
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
$m is m!, so between 7! + 2 and 7! + 10 how many prime number are there?

All of prime numbers except 2 are odd, 7! is even so only 7! + 3, 5, 7, or 9 can make an odd number.

Prime number is divisible by 1 and itself, examine the contenders:
- 7! divisible by 3, so adding 3 or 9 will result in a number divisible by 3.
- 7! is divisible by 5 and 7 also, so adding 5 or 7 will result in a number divisible by 5 or 7.

In sum, A- None.
User avatar
chetan2u
User avatar
GMAT Expert
Joined: 02 Aug 2009
Last visit: 27 Mar 2025
Posts: 11,342
Own Kudos:
39,808
 [1]
Given Kudos: 333
Status:Math and DI Expert
Products:
Expert
Expert reply
Posts: 11,342
Kudos: 39,808
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
gmatexam439
For any integer m greater than 1, $m denotes the product of all the integers from 1 to m, inclusive. How many prime numbers are there between $7 + 2 and $7 + 10, inclusive?

(A) None
(B) One
(C) Two
(D) Three
(E) Four

hi..

$7 is nothing but 7!..
LOGIC why none is prime
so we are looking at PRIMES between 7!+2 and 7!+10..

7!= 1*2*3*4*5*6*7, so 7! is multiple of 1,2,3,4,5,6,7,8(2*5),9(3*6),10(2*5)
so when you add any of these number starting from 2 till 10 to 7! the RESULTING SUM will be a MULTIPLE of that number 2,3,..or 10..
so NONE is PRIME

A
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 27 Mar 2025
Posts: 20,415
Own Kudos:
Given Kudos: 292
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 20,415
Kudos: 25,457
Kudos
Add Kudos
Bookmarks
Bookmark this Post
gmatexam439
For any integer m greater than 1, $m denotes the product of all the integers from 1 to m, inclusive. How many prime numbers are there between $7 + 2 and $7 + 10, inclusive?

(A) None
(B) One
(C) Two
(D) Three
(E) Four

We see that $m is the conventional notation of m!. Thus, the problem asks for the number of prime numbers between 7! + 2 and 7! + 10, inclusive. Let’s analyze each of these numbers.

7! + 2: Since 2 divides into 7! and 2, 7! + 2 has 2 as a factor, and thus it’s not a prime.

7! + 3: Since 3 divides into 7! and 3, 7! + 3 has 3 as a factor, and thus it’s not a prime.

7! + 4: Since 4 divides into 7! and 4, 7! + 4 has 4 as a factor, and thus it’s not a prime.

7! + 5: Since 5 divides into 7! and 5, 7! + 5 has 5 as a factor, and thus it’s not a prime.

7! + 6: Since 6 divides into 7! and 6, 7! + 6 has 6 as a factor, and thus it’s not a prime.

7! + 7: Since 7 divides into 7! and 7, 7! + 7 has 7 as a factor, and thus it’s not a prime.

7! + 8: Since 8 divides into 7! (notice that 7! has factors 2 and 4) and 8, 7! + 8 has 8 as a factor, and thus it’s not a prime.

7! + 9: Since 9 divides into 7! (notice that 7! has factors 3 and 6) and 9, 7! + 9 has 9 as a factor, and thus it’s not a prime.

7! + 10: Since 10 divides into 7! (notice that 7! has factors 2 and 5) and 10, 7! + 10 has 10 as a factor, and thus it’s not a prime.

Thus, none of the integers between 7! + 2 and 7! + 10, inclusive, are prime.

Answer: A
User avatar
MikeScarn
User avatar
Current Student
Joined: 04 Sep 2017
Last visit: 05 Dec 2024
Posts: 278
Own Kudos:
Given Kudos: 228
Status:Booth 1Y
Location: United States (IL)
Concentration: Technology, Leadership
GMAT 1: 690 Q44 V41
GMAT 2: 730 Q50 V38
GPA: 3.62
WE:Sales (Computer Software)
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
megafan
For any integer m greater than 1, $m denotes the product of all the integers from 1 to m, inclusive. How many prime numbers are there between $7 + 2 and $7 + 10, inclusive?

(A) None
(B) One
(C) Two
(D) Three
(E) Four

$ is basically a factorial of a number.

So, we are asked to find the number of primes between 7!+2 and 7!+10, inclusive.

From each number 7!+k where \(2\leq{k}\leq{10}\) we can factor out k, thus there are no primes in the given range.

For example:
7!+2=2(3*4*5*6*7+1) --> a multiple of 2, thus not a prime;
7!+3=3(2*4*5*6*7+1) --> a multiple of 3, thus not a prime;
...
7!+10=10(3*4*6*7+1) --> a multiple of 10, thus not a prime.

Answer: A.

Hope it's clear.

Hi Bunuel , I am trying to better understand this concept. So with this thought process, would any number 7!+k where k is a postive integer lead to a prime number?

Example k is 29, well 29(2*3*4*5*6*7+1) is not divisible by 29. it leads to 5069 which is prime.

Do we know that any number k that is within 7! (7,6,5...) will be a factor of k itself? And then we just have to decide for k=8,9, and 10? k=8 and 10 are even so obviously not prime. And it just so happens k=9 leads to 5049 which is divisible by 9.

I guess my question is how can we be sure that 7!+k where k is between 2 and 10 is prime? I see that 7!+7 is divisible by 7, but why is 7!+13 not divisible by 13?

Thanks
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 28 March 2025
Posts: 100,116
Own Kudos:
Given Kudos: 92,748
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 100,116
Kudos: 711,471
Kudos
Add Kudos
Bookmarks
Bookmark this Post
msurls
Bunuel
megafan
For any integer m greater than 1, $m denotes the product of all the integers from 1 to m, inclusive. How many prime numbers are there between $7 + 2 and $7 + 10, inclusive?

(A) None
(B) One
(C) Two
(D) Three
(E) Four

$ is basically a factorial of a number.

So, we are asked to find the number of primes between 7!+2 and 7!+10, inclusive.

From each number 7!+k where \(2\leq{k}\leq{10}\) we can factor out k, thus there are no primes in the given range.

For example:
7!+2=2(3*4*5*6*7+1) --> a multiple of 2, thus not a prime;
7!+3=3(2*4*5*6*7+1) --> a multiple of 3, thus not a prime;
...
7!+10=10(3*4*6*7+1) --> a multiple of 10, thus not a prime.

Answer: A.

Hope it's clear.

Hi Bunuel , I am trying to better understand this concept. So with this thought process, would any number 7!+k where k is a postive integer lead to a prime number?

Example k is 29, well 29(2*3*4*5*6*7+1) is not divisible by 29. it leads to 5069 which is prime.

Do we know that any number k that is within 7! (7,6,5...) will be a factor of k itself? And then we just have to decide for k=8,9, and 10? k=8 and 10 are even so obviously not prime. And it just so happens k=9 leads to 5049 which is divisible by 9.

I guess my question is how can we be sure that 7!+k where k is between 2 and 10 is prime? I see that 7!+7 is divisible by 7, but why is 7!+13 not divisible by 13?

Thanks

7! + k will NOT be a prime if 7! and k have a common factor other than 1. In this case we would be able to factor out that factor out of 7! + k. For example, 7! + 7 is not a prime because 7! and 7 have 7 as a common factor so we can factor out 7 out of 7! + 7: 7! + 7 = 7(6! + 1).

If 7! and k does NOT have a common factor other than 1, then 7! + k might or might not be a prime. For example, 7! + 11 = 5051, which IS a prime but 7! + 13 = 5053, which is NOT a prime.
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 27 Mar 2025
Posts: 20,415
Own Kudos:
25,457
 [2]
Given Kudos: 292
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 20,415
Kudos: 25,457
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
megafan
For any integer m greater than 1, $m denotes the product of all the integers from 1 to m, inclusive. How many prime numbers are there between $7 + 2 and $7 + 10, inclusive?

(A) None
(B) One
(C) Two
(D) Three
(E) Four

We see that $m is the conventional notation of m!. Thus, the problem asks for the number of prime numbers between 7! + 2 and 7! + 10, inclusive. Let’s analyze each of these numbers.

7! + 2: Since 2 divides into 7! and 2, 7! + 2 has 2 as a factor, and thus it’s not a prime.

7! + 3: Since 3 divides into 7! and 3, 7! + 3 has 3 as a factor, and thus it’s not a prime.

7! + 4: Since 4 divides into 7! and 4, 7! + 4 has 4 as a factor, and thus it’s not a prime.

7! + 5: Since 5 divides into 7! and 5, 7! + 5 has 5 as a factor, and thus it’s not a prime.

7! + 6: Since 6 divides into 7! and 6, 7! + 6 has 6 as a factor, and thus it’s not a prime.

7! + 7: Since 7 divides into 7! and 7, 7! + 7 has 7 as a factor, and thus it’s not a prime.

7! + 8: Since 8 divides into 7! (notice that 7! has factors 2 and 4) and 8, 7! + 8 has 8 as a factor, and thus it’s not a prime.

7! + 9: Since 9 divides into 7! (notice that 7! has factors 3 and 6) and 9, 7! + 9 has 9 as a factor, and thus it’s not a prime.

7! + 10: Since 10 divides into 7! (notice that 7! has factors 2 and 5) and 10, 7! + 10 has 10 as a factor, and thus it’s not a prime.

Thus, none of the integers between 7! + 2 and 7! + 10, inclusive, are prime.

Answer: A
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 36,716
Own Kudos:
Posts: 36,716
Kudos: 963
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
100116 posts
PS Forum Moderator
521 posts