Jul 16 03:00 PM PDT  04:00 PM PDT Join a free live webinar and find out which skills will get you to the top, and what you can do to develop them. Save your spot today! Tuesday, July 16th at 3 pm PST Jul 16 08:00 PM EDT  09:00 PM EDT Strategies and techniques for approaching featured GMAT topics. Tuesday, July 16th at 8 pm EDT Jul 15 10:00 PM PDT  11:00 PM PDT Get the complete Official GMAT Exam Pack collection worth $100 with the 3 Month Pack ($299) Jul 15 10:00 PM PDT  11:00 PM PDT Take 20% off the plan of your choice, now through midnight on Monday, July 15th Jul 19 08:00 AM PDT  09:00 AM PDT The Competition Continues  Game of Timers is a teambased competition based on solving GMAT questions to win epic prizes! Starting July 1st, compete to win prep materials while studying for GMAT! Registration is Open! Ends July 26th Jul 21 07:00 AM PDT  09:00 AM PDT Attend this webinar to learn a structured approach to solve 700+ Number Properties question in less than 2 minutes
Author 
Message 
TAGS:

Hide Tags

CEO
Joined: 12 Sep 2015
Posts: 3846
Location: Canada

If 2 < x <= 5, then which of the following MUST be true?
[#permalink]
Show Tags
06 Oct 2016, 10:53
Question Stats:
27% (01:40) correct 73% (01:24) wrong based on 541 sessions
HideShow timer Statistics
If \(2 < x \leq {5}\), then which of the following MUST be true? A) \(1 < x^2 < 16\) B) \(4 < x^2 \leq {25}\) C) \(0 \leq {x^2} \leq {16}\) D) \(0 < x^2 \leq {25}\) E) \(4 \leq {x^2} < 36\)
Official Answer and Stats are available only to registered users. Register/ Login.
_________________
Test confidently with gmatprepnow.com




Retired Moderator
Joined: 13 Apr 2015
Posts: 1677
Location: India
Concentration: Strategy, General Management
GPA: 4
WE: Analyst (Retail)

Re: If 2 < x <= 5, then which of the following MUST be true?
[#permalink]
Show Tags
06 Oct 2016, 11:30
GMATPrepNow wrote: If 2 < x < 5, then which of the following MUST be true?
A) 1 < x² < 16 B) 4 < x² < 25 C) 0 < x² < 16 D) 0 < x² < 25 E) 4 < x² < 36
Kudos for every correct solution. Given: \(2 < x \leq {5}\) Value of \(x^2\) can range from 0 to 25. Only option E covers the above range Answer: E Alternate method: Put x = 5 > A and C can't be true Put x = 0 > B and D can't be true Choice E works for all x between 2 and 5. Answer: E




CEO
Joined: 12 Sep 2015
Posts: 3846
Location: Canada

If 2 < x <= 5, then which of the following MUST be true?
[#permalink]
Show Tags
Updated on: 30 Nov 2016, 14:41
s1d1 wrote: can anybody explain the answer? Vyshak's solutions are great. Let's examine his second approach. If 2 < x < 5, then it's possible that x = 5, in which case x² = 25 In other words, it's possible that x² = 25 When we check the answer choices, we see that... Answer choice A says that x² < 16. In other words, it says that x² cannot equal 25. ELIMINATE A Answer choice C says that x² < 16. In other words, it says that x² cannot equal 25. ELIMINATE C Also, if 2 < x < 5, then it's possible that x = 0, in which case x² = 0 In other words, it's possible that x² = 0 When we check the remaining answer choices, we see that... Answer choice B says that 4 < x². In other words, it says that x² cannot equal 0. ELIMINATE B Answer choice D says that 0 < x². In other words, it says that x² cannot equal 0. ELIMINATE D We're left with 1 answer choice...E Cheers, Brent
_________________
Test confidently with gmatprepnow.com
Originally posted by GMATPrepNow on 06 Oct 2016, 12:50.
Last edited by GMATPrepNow on 30 Nov 2016, 14:41, edited 1 time in total.



Intern
Joined: 07 Oct 2015
Posts: 6

Re: If 2 < x <= 5, then which of the following MUST be true?
[#permalink]
Show Tags
19 Nov 2016, 08:25
GMATPrepNow wrote: s1d1 wrote: can anybody explain the answer? Vyshak's solutions are great. Let's examine his second approach. If 2 < x < 5, then it's possible that x = 5, in which case x² = 25 In other words, it's possible that x² = 25 When we check the answer choices, we see that... Answer choice A says that x² < 16. In other words, it says that x² cannot equal 25. ELIMINATE A Answer choice C says that x² < 16. In other words, it says that x² cannot equal 25. ELIMINATE C Also, if 2 < x < 5, then it's possible that x = 0, in which case x² = 0 In other words, it's possible that x² = 0 When we check the remaining answer choices, we see that... Answer choice B says that 4 < x². In other words, it says that x² cannot equal 0. ELIMINATE B Answer choice D says that 0 < x². In other words, it says that x² cannot equal 0. ELIMINATE D We're left with 1 answer choice...E Cheers, Brent Square of any number can never b negative, answer D is correct.



Math Expert
Joined: 02 Sep 2009
Posts: 56235

Re: If 2 < x <= 5, then which of the following MUST be true?
[#permalink]
Show Tags
19 Nov 2016, 08:30
afarrukh786 wrote: GMATPrepNow wrote: s1d1 wrote: can anybody explain the answer? Vyshak's solutions are great. Let's examine his second approach. If 2 < x < 5, then it's possible that x = 5, in which case x² = 25 In other words, it's possible that x² = 25 When we check the answer choices, we see that... Answer choice A says that x² < 16. In other words, it says that x² cannot equal 25. ELIMINATE A Answer choice C says that x² < 16. In other words, it says that x² cannot equal 25. ELIMINATE C Also, if 2 < x < 5, then it's possible that x = 0, in which case x² = 0 In other words, it's possible that x² = 0 When we check the remaining answer choices, we see that... Answer choice B says that 4 < x². In other words, it says that x² cannot equal 0. ELIMINATE B Answer choice D says that 0 < x². In other words, it says that x² cannot equal 0. ELIMINATE D We're left with 1 answer choice...E Cheers, Brent Square of any number can never b negative, answer D is correct. From the stem x CAN be 0, and if it is, then D is wrong. The correct answer is E. Please reread the solutions above.
_________________



Intern
Joined: 07 Oct 2015
Posts: 6

Re: If 2 < x <= 5, then which of the following MUST be true?
[#permalink]
Show Tags
19 Nov 2016, 09:40
From the stem x CAN be 0, and if it is, then D is wrong. The correct answer is E. Please reread the solutions
D option does not say equal to zero, it says greater than zero, if you see option D, there is not a sign of equal to



Intern
Joined: 06 Oct 2016
Posts: 18

Re: If 2 < x <= 5, then which of the following MUST be true?
[#permalink]
Show Tags
19 Nov 2016, 10:11
I could agree with all of you and eliminate abcd but what about e square of any number cannot be negative so how is option e true. Can anyone tell why option E. Sent from my A1601 using GMAT Club Forum mobile app



Intern
Joined: 24 Oct 2016
Posts: 8
Location: United States
GPA: 3.2

Re: If 2 < x <= 5, then which of the following MUST be true?
[#permalink]
Show Tags
19 Nov 2016, 10:53
ashishahujasham wrote: I could agree with all of you and eliminate abcd but what about e square of any number cannot be negative so how is option e true.
Can anyone tell why option E. This to me is a simple question that is complicated by GMAT trickery in the way the answer choices are presented. the smallest value for x^2 is 0, and 0 is always greater than 4, so option E still fulfills the demands of the question. It is always true that x^2 is greater than or equal to 4 because it is always greater than 4.



Intern
Joined: 07 Oct 2015
Posts: 6

Re: If 2 < x <= 5, then which of the following MUST be true?
[#permalink]
Show Tags
19 Nov 2016, 11:04
adamm412 wrote: ashishahujasham wrote: I could agree with all of you and eliminate abcd but what about e square of any number cannot be negative so how is option e true.
Can anyone tell why option E. This to me is a simple question that is complicated by GMAT trickery in the way the answer choices are presented. the smallest value for x^2 is 0, and 0 is always greater than 4, so option E still fulfills the demands of the question. It is always true that x^2 is greater than or equal to 4 because it is always greater than 4. How can E be answer while it include negative numbers and zero also



Intern
Joined: 24 Oct 2016
Posts: 8
Location: United States
GPA: 3.2

Re: If 2 < x <= 5, then which of the following MUST be true?
[#permalink]
Show Tags
19 Nov 2016, 11:13
afarrukh786 wrote: adamm412 wrote: ashishahujasham wrote: I could agree with all of you and eliminate abcd but what about e square of any number cannot be negative so how is option e true.
Can anyone tell why option E. This to me is a simple question that is complicated by GMAT trickery in the way the answer choices are presented. the smallest value for x^2 is 0, and 0 is always greater than 4, so option E still fulfills the demands of the question. It is always true that x^2 is greater than or equal to 4 because it is always greater than 4. How can E be answer while it include negative numbers and zero also Again it comes down to the way the question is presented: "which of the following MUST be true". In theory, answer E could have been 1,000,000 ≤ x^2 < 1,000,000 and it would still be the only correct answer because it is the only solution offered that contains the actual possible values of x^2. notice the maximum value of x^2 is 25 but answer E allows for up to 36... we know x^2 cannot get that big, but the way the solution is presented means x^2 never actually needs to reach ~36 in order for it to still satisfy those constraints. This is the same idea on the negative lower bound of x^2. Also, x^2 = 0 is a possible solution if x=0.



Senior Manager
Joined: 06 Jun 2016
Posts: 258
Location: India
Concentration: Operations, Strategy
GMAT 1: 600 Q49 V23 GMAT 2: 680 Q49 V34
GPA: 3.9

Re: If 2 < x <= 5, then which of the following MUST be true?
[#permalink]
Show Tags
20 Nov 2016, 01:54
GMATPrepNow wrote: If \(2 < x \leq {5}\), then which of the following MUST be true?
A) \(1 < x^2 < 16\) B) \(4 < x^2 \leq {25}\) C) \(0 \leq {x^2} \leq {16}\) D) \(0 < x^2 \leq {25}\) E) \(4 \leq {x^2} < 36\)
Kudos for every correct solution. Ok lets make it simpler. Given is \(2 < x \leq {5}\) which means x can have the following values 1, 0, 1, 2, 3, 4, 5 (for simplification purpose i'm using integers. x can have a decimal values also as question doesn't say x is an integer) now see what all values can x^2 take. x^2 can take 0, 1, 4, 9, 16, 25. Yes? with this knowledge approach the answer choice. Only option E gives you all the above values of x^2.



Math Expert
Joined: 02 Sep 2009
Posts: 56235

Re: If 2 < x <= 5, then which of the following MUST be true?
[#permalink]
Show Tags
20 Nov 2016, 03:28
afarrukh786 wrote: adamm412 wrote: ashishahujasham wrote: I could agree with all of you and eliminate abcd but what about e square of any number cannot be negative so how is option e true.
Can anyone tell why option E. This to me is a simple question that is complicated by GMAT trickery in the way the answer choices are presented. the smallest value for x^2 is 0, and 0 is always greater than 4, so option E still fulfills the demands of the question. It is always true that x^2 is greater than or equal to 4 because it is always greater than 4. How can E be answer while it include negative numbers and zero also I think you don't understand the logic of the question. The question asks: if \(2 < x \leq {5}\), then which of the following MUST be true? So, we KNOW that \(2 < x \leq {5}\) and should evaluate which of the options must be correct. If \(2 < x \leq {5}\), then only E must be true.
_________________



Math Expert
Joined: 02 Aug 2009
Posts: 7764

Re: If 2 < x <= 5, then which of the following MUST be true?
[#permalink]
Show Tags
20 Nov 2016, 05:09
GMATPrepNow wrote: If \(2 < x \leq {5}\), then which of the following MUST be true?
A) \(1 < x^2 < 16\)
B) \(4 < x^2 \leq {25}\)
C) \(0 \leq {x^2} \leq {16}\)
D) \(0 < x^2 \leq {25}\)
E) \(4 \leq {x^2} < 36\) Hi, No calculations required, just logic on the choices given... E has the widest range and contains ALL other choices, so if any of A to D is correct, E has to be correct.... But can we have TWO answers, No.. So E is the answer
_________________



CEO
Joined: 12 Sep 2015
Posts: 3846
Location: Canada

Re: If 2 < x <= 5, then which of the following MUST be true?
[#permalink]
Show Tags
20 Nov 2016, 06:35
GMATPrepNow wrote: If \(2 < x \leq {5}\), then which of the following MUST be true?
A) \(1 < x^2 < 16\)
B) \(4 < x^2 \leq {25}\)
C) \(0 \leq {x^2} \leq {16}\)
D) \(0 < x^2 \leq {25}\)
E) \(4 \leq {x^2} < 36\) Many students will assume that E is incorrect, because x² CANNOT equal 4. However, answer choice E does not suggest that x² can equal 4, it only states that x² must be GREATER THAN or equal to 4. Here's a similar example: If Joe has more than 5 shirts, which of the following can we conclude with certainty? A) Joe owns more than 6 shirts. NO. We can't conclude this, because it's possible that Joe owns exactly 6 shirts, and 6 is not greater than 6. B) Joe owns more than 3 shirts. YES. If Joe owns more than 5 shirts, then he definitely owns more than 3 shirts? Does this mean that Joe COULD own 2 shirts? No. If just means that we can be certain that he owns more than 3 shirts. Does that help? Cheers, Brent
_________________
Test confidently with gmatprepnow.com



NonHuman User
Joined: 09 Sep 2013
Posts: 11649

Re: If 2 < x <= 5, then which of the following MUST be true?
[#permalink]
Show Tags
23 Dec 2018, 00:58
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________




Re: If 2 < x <= 5, then which of the following MUST be true?
[#permalink]
23 Dec 2018, 00:58






