Last visit was: 19 Nov 2025, 00:38 It is currently 19 Nov 2025, 00:38
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
troop2118
Joined: 09 Jan 2009
Last visit: 14 Jan 2009
Posts: 4
Own Kudos:
79
 [79]
Posts: 4
Kudos: 79
 [79]
2
Kudos
Add Kudos
77
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
IanStewart
User avatar
GMAT Tutor
Joined: 24 Jun 2008
Last visit: 18 Nov 2025
Posts: 4,145
Own Kudos:
10,985
 [30]
Given Kudos: 99
Expert
Expert reply
Posts: 4,145
Kudos: 10,985
 [30]
15
Kudos
Add Kudos
15
Bookmarks
Bookmark this Post
User avatar
sashiim20
Joined: 04 Dec 2015
Last visit: 05 Jun 2024
Posts: 609
Own Kudos:
1,886
 [13]
Given Kudos: 276
Location: India
Concentration: Technology, Strategy
WE:Information Technology (Consulting)
8
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
General Discussion
User avatar
piyatiwari
Joined: 28 Jun 2009
Last visit: 15 Jun 2021
Posts: 313
Own Kudos:
442
 [5]
Given Kudos: 46
Location: United States (MA)
Posts: 313
Kudos: 442
 [5]
5
Kudos
Add Kudos
Bookmarks
Bookmark this Post
For me, fastest method was plugging in the answer choices.

From the answer choices, only 12, 20 and 30 satisfy x(x-1).

Among these only 20 i.e. x = 5 satisfies : 3^x - 3^(x-1) = 162

Hence answer is C.
User avatar
iamgame
Joined: 09 Nov 2011
Last visit: 26 Mar 2013
Posts: 94
Own Kudos:
131
 [1]
Given Kudos: 16
Posts: 94
Kudos: 131
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
3^x - 3^x-1=162
3^x[1-1/3]=162
3^x[2/3]=162
3^x=81*3
=>x=5
x(x-1) =5*4 = 20
Hence C
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,784
Own Kudos:
12,806
 [3]
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,784
Kudos: 12,806
 [3]
1
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
Hi All,

If you're not an expert at tougher exponent rule questions such as this, you can sometimes get to the answer with a bit of "brute force", even without knowing the exact exponent rules involved in the prompt. Here's how:

This question involves 3 raised to different "powers"; you can calculate them rather easily...

3^1 = 3
3^2 = 9
3^3 = 27
3^4 = 81
3^5 = 243

3^X and 3^(X-1) are consecutive powers of 3.
We're told that 3^X - 3^(X-1) = 162, so we just need to find 2 consecutive multiples of 3 that differ by 162.

Notice how...
3^5 - 3^4 =
243 - 81 =
162

This is EXACTLY what we're looking for.

X = 5
(X-1) = 4

So....(X)(X-1) = (5)(4) = 20

GMAT assassins aren't born, they're made,
Rich
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 18 Nov 2025
Posts: 21,712
Own Kudos:
26,994
 [1]
Given Kudos: 300
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 21,712
Kudos: 26,994
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
troop2118
If 3^x - 3^(x-1) = 162, then x(x - 1) =

A. 12
B. 16
C. 20
D. 30
E. 81

We can simplify the left side of the equation and then factor 162 as 3^4 * 2^1. Then we have:

3^x - 3^x * 3^-1 = 3^4 * 2^1

3^x(1 - 3^-1) = 3^4 * 2^1

On the left side, note that the expression (1 - 3^-1) = 1 - (⅓) = ⅔. We now have:

3^x(2/3) = 3^4 * 2^1

3^x = (3^4 * 2)(3/2)

3^x = 3^4 *3

3^x = 3^5

x = 5

So x(x-1) = 5(4) = 20.

Alternate Solution:

Note that 3^x = 3 * 3^(x - 1). Then:

3^x - 3^(x - 1) = 3 * 3^(x - 1) - 3^(x - 1)

Let’s factor the common 3^(x - 1):

3 * 3^(x - 1) - 3^(x - 1) = 3^(x - 1)(3 - 1) = 3^(x - 1)(2) = 162

3^(x - 1) = 81 = 3^4

x - 1 = 4

x = 5

Then, x(x - 1) = 20.

Answer: C
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,333
Kudos
Add Kudos
Bookmarks
Bookmark this Post
troop2118
If 3^x - 3^(x-1) = 162, then x(x - 1) =

A. 12
B. 16
C. 20
D. 30
E. 81

Attachment:
Picture 8.png

Given: 3^x - 3^(x-1) = 162
Factor to get: [3^(x-1)][3^1 - 1] = 162
Simplify to get: [3^(x-1)][2] = 162
Divide both sides by 2 to get: 3^(x-1) = 81
Rewrite the right side as 3^(x-1) = 3^4
So, x - 1 = 4
This means x = 5

We get x(x - 1) = (5)(5 - 1) = (5)(4) = 20

Answer: [spoiler]C[/spoiler]

RELATED VIDEO FROM OUR COURSE
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,784
Own Kudos:
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,784
Kudos: 12,806
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi All,

We're told that 3^(X) - 3^(X-1) = 162. We're asked for the value of then (X)(X-1). This question can be solved rather easily with a bit of 'brute force' arithmetic.

Since we're dealing with 'powers of 3', let's map out the first several values:
3^1 = 3
3^2 = 9
3^3 = 27
3^4 = 81
3^5 = 243

We're subtracting two consecutive powers of 3 and ending up with 162. Looking at the list so far, we have an obvious 'pair' of values that fits what we're looking for:

3^5 and 3^4
243 - 81 = 162

Thus, X = 5 and the answer to the question is (5)(5-1) = 20

Final Answer:

GMAT assassins aren't born, they're made,
Rich
User avatar
fskilnik
Joined: 12 Oct 2010
Last visit: 03 Jan 2025
Posts: 885
Own Kudos:
Given Kudos: 57
Status:GMATH founder
Expert
Expert reply
Posts: 885
Kudos: 1,801
Kudos
Add Kudos
Bookmarks
Bookmark this Post
troop2118
If 3^x - 3^(x-1) = 162, then x(x - 1) =

A. 12
B. 16
C. 20
D. 30
E. 81
\(? = x\left( {x - 1} \right)\)

\(\left. \begin{gathered}\\
{3^x} - {3^{x - 1}} = {3^{x - 1}}\left( {3 - 1} \right)\,\,\, \hfill \\\\
162 = 2 \cdot 81 = 2 \cdot {3^4} \hfill \\ \\
\end{gathered} \right\}\,\,\,\,\,\,\,\mathop \Rightarrow \limits^{{\text{stem}}} \,\,\,\,\,\,\,{3^{x - 1}} = {3^4}\,\,\,\,\,\,\,\mathop \Rightarrow \limits^{{\text{3}}\,\, \notin \,\,\left\{ {0,1, - 1} \right\}} \,\,\,\,\,\,\,x - 1 = 4\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,? = 20\)


This solution follows the notations and rationale taught in the GMATH method.

Regards,
Fabio.
User avatar
jfranciscocuencag
Joined: 12 Sep 2017
Last visit: 17 Aug 2024
Posts: 227
Own Kudos:
Given Kudos: 132
Posts: 227
Kudos: 140
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ScottTargetTestPrep
troop2118
If 3^x - 3^(x-1) = 162, then x(x - 1) =

A. 12
B. 16
C. 20
D. 30
E. 81

We can simplify the left side of the equation and then factor 162 as 3^4 * 2^1. Then we have:

3^x - 3^x * 3^-1 = 3^4 * 2^1

3^x(1 - 3^-1) = 3^4 * 2^1

On the left side, note that the expression (1 - 3^-1) = 1 - (⅓) = ⅔. We now have:

3^x(2/3) = 3^4 * 2^1

3^x = (3^4 * 2)(3/2)

3^x = 3^4 *3

3^x = 3^5

x = 5

So x(x-1) = 5(4) = 20.

Alternate Solution:

Note that 3^x = 3 * 3^(x - 1). Then:

3^x - 3^(x - 1) = 3 * 3^(x - 1) - 3^(x - 1)

Let’s factor the common 3^(x - 1):

3 * 3^(x - 1) - 3^(x - 1) = 3^(x - 1)(3 - 1) = 3^(x - 1)(2) = 162

3^(x - 1) = 81 = 3^4

x - 1 = 4

x = 5

Then, x(x - 1) = 20.

Answer: C

Hello ScottTargetTestPrep !

Would you be so kind and explain to me how did you get to the following?

Note that 3^x = 3 * 3^(x - 1). Then:

3^x - 3^(x - 1) = 3 * 3^(x - 1) - 3^(x - 1)


Kind regards!
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 18 Nov 2025
Posts: 21,712
Own Kudos:
Given Kudos: 300
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 21,712
Kudos: 26,994
Kudos
Add Kudos
Bookmarks
Bookmark this Post
So here are some more details:

3^x = 3^[x - 1 + 1] = 3^[(x - 1) + 1] = [3^(x - 1)]*[3^1] = 3*3^(x - 1)

However, that's a long and complicated way of putting things. In reality, you would just observe that given any power, you can always decrease the exponent by one and multiply with the base to get an equivalent expression. For instance, if you have 2^5 (which is 2 multiplied by itself five times), that is equal to [2^4]*2 (which is 2 multiplied by itself four times, and then multiplied by 2 once more).

In the next line, all we did was to replace 3^x by the equivalent expression of 3*3^(x - 1) which we obtained as explained above.

Posted from my mobile device
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,584
Own Kudos:
Posts: 38,584
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105379 posts
Tuck School Moderator
805 posts