GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 22 Jul 2018, 11:12

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If a, b, and c are positive integers such that 1/a + 1/b = 1

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
S
Affiliations: Veritas Prep
Joined: 21 Dec 2014
Posts: 40
Location: United States (DC)
My Company: www.parallaxprep.com
GMAT 1: 790 Q51 V51
GRE 1: Q800 V800
GPA: 3.11
WE: Education (Education)
If a, b, and c are positive integers such that 1/a + 1/b = 1  [#permalink]

Show Tags

New post 06 Apr 2017, 13:20
1
KARISHMA315 wrote:
monsoon1 wrote:
If a, b, and c are positive integers such that 1/a + 1/b = 1/c, what is the value of c?

(1) b ≤ 4
(2) ab ≤ 15




Is there any algebraic approach to be sure that B is sufficient


I am pretty sure I have an algebraic/number theoretic derivation of the general form of the solutions, but it's ugly and really not how you want to go about this. Still, for completeness and since you asked...

\(\frac{1}{c} = \frac{a+b}{ab}\)
\(c = \frac{ab}{a+b}\)

Now note that, since c is a positive integer, a+b must divide ab. This is only possible if a and b share a common factor greater than 1, based on the principle that "multiple + non-multiple = non-multiple"; unless a and b share some factor greater than 1, a+b will not share any factor greater than 1 with a and, by the same token, a+b will not share any factor greater than 1 with b.

So a and b have a greatest common factor larger than 1, and we will call this factor g. We will define a = gp and b =gq.

Now rewrite the expression as

\(c = \frac{gpgq}{gp+gq}\)
\(c = \frac{g^2pq}{g(p+q)}\)
\(c = \frac{gpq}{p+q}\)

Now recall that p and q by definition are positive integers that have no common factors greater than 1. So p+q shares no factors besides 1 with either p or q. This means that c will be an integer if and only if g is divisible by p+q.

We can rewrite one final time by taking g = k(p+q). This gives, at last,

\(a = k(p+q)p\)

and

\(b = k(p+q)q\)

so

\(ab = k^2(p+q)^2pq\)

It is now easy to verify that \(ab \leq 15\) is sufficient, since p = q = k = 1 gives \(1^2 * (1+1)^2 * 1 * 1 = 4\), but if p = q = 1 and k = 2 then a = 4, b = 4, and the product is 16, and if k = 1, either p or q = 1, and the other of q or p = 2, then a = 3, b = 6 (or vice versa), and the product is 18.

And this should work for any positive integers p and q that share no common factors greater than 1 and for any positive integer k, in which case the result will be c = kpq.

Try it!

For instance:

p = 3
q = 8
k = 4

gives

a = 132
b = 352

and, sure enough, c will be an integer:

c = 96

Another set:

p = 7
q = 11
k = 77

a = 9702
b = 15246
c = 5929

Now, aren't you glad you asked for algebra? ;)
Expert Post
1 KUDOS received
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2679
Re: If a, b, and c are positive integers such that 1/a + 1/b = 1  [#permalink]

Show Tags

New post 14 Apr 2017, 05:53
1
monsoon1 wrote:
If a, b, and c are positive integers such that 1/a + 1/b = 1/c, what is the value of c?

(1) b ≤ 4
(2) ab ≤ 15


We are given that a, b, and c are positive integers such that 1/a + 1/b = 1/c. We can multiply the entire equation by abc and we have:

bc + ac = ab

c(b + a) = ab

c = ab/(b + a)

Statement One Alone:

b ≤ 4

Knowing only that b is less than or equal to 4 is not enough information to answer the question. For example, if b = 4 and a = 4, then c = (4 x 4)/(4 + 4) = 2. However, if b = 2 and a = 2, then c = (2 x 2)/(2 + 2) = 1. Statement one alone is not sufficient.

Statement Two Alone:

ab ≤ 15

We can try all pairs of possible positive integer values of a and b such that ab ≤ 15 and see which pairs yield a positive integer value of c (keep in mind that c = ab/(b + a)). Furthermore, for a pair of values of a and b (e.g., a = 5 and b = 3), even though we can switch the two values and say b = 5 and a = 3, it won’t change the result of c, since multiplication and addition are commutative (i.e., ab = ba and a + b = b + a). That is, if we consider a = 5 and b = 3, we don’t need to consider a = 3 and b = 5. Thus, let’s only consider all of the cases in which a ≥ b. Lastly, we don’t have to consider b = 1 because if b = 1, then a(1)/(1 + a) = a/(1 + a) will never be an integer. Keeping in mind what we have mentioned, the following are all of the cases we need to consider:

1) a = 5, b = 3: c = ab/(b + a) = 15/8 → not an integer

2) a = 5, b = 2: c = ab/(b + a) = 10/7 → not an integer

3) a = 4, b = 3: c = ab/(b + a) = 12/7 → not an integer

4) a = 4, b = 2: c = ab/(b + a) = 8/6 → not an integer

5) a = 3, b = 3: c = ab/(b + a) = 9/6 → not an integer

6) a = 3, b = 2: c = ab/(b + a) = 6/5 → not an integer

7) a = 2, b = 2: c = ab/(b + a) = 4/4 = 1→ IS an integer

Thus, c must be equal to 1.

Answer: B
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Manager
Manager
avatar
S
Joined: 10 Dec 2011
Posts: 102
Location: India
Concentration: Finance, Economics
GMAT Date: 09-28-2012
WE: Accounting (Manufacturing)
Re: If a, b, and c are positive integers such that 1/a + 1/b = 1  [#permalink]

Show Tags

New post 04 Jan 2018, 10:03
mau5 wrote:

From F.S 1, we know that for a to be positive, c<b. The given equation is valid for b=2,c=1 and also for b=3,c=2. Insufficient.


Now, back to your question.


We know that\(\frac{a+b}{2}\geq{\sqrt{ab}}\)

Also, from the question stem, we know that \(\frac{a+b}{ab} =\frac{1}{c}\)

Thus, \((a+b) = \frac{ab}{c}\). Replacing this in the first equation, we get \(\frac{ab}{2c}\geq{\sqrt{ab}}\)

Or,\(c\leq{\frac{\sqrt{ab}}{2}} \to c\leq{\frac{\sqrt{15}}{2}} \to c<{2}\). Thus, the only positive integer less than 2 is One and thus c=1.Sufficient.


Whoa! That's some really interesting point you are making. Never heard of this... that the average of two average of two numbers is always greather than the square root of the product of two numbers! Does this property hold always?
Re: If a, b, and c are positive integers such that 1/a + 1/b = 1 &nbs [#permalink] 04 Jan 2018, 10:03

Go to page   Previous    1   2   [ 23 posts ] 

Display posts from previous: Sort by

If a, b, and c are positive integers such that 1/a + 1/b = 1

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Events & Promotions

PREV
NEXT


GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.