Last visit was: 16 May 2025, 13:32 It is currently 16 May 2025, 13:32
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Syumbel1
Joined: 28 Nov 2023
Last visit: -
Posts: 6
Own Kudos:
Location: India
Posts: 6
Kudos: 10
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
stne
Joined: 27 May 2012
Last visit: 16 May 2025
Posts: 1,758
Own Kudos:
Given Kudos: 653
Posts: 1,758
Kudos: 1,784
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Its_me_aka_ak
Joined: 16 Jul 2023
Last visit: 22 Sep 2024
Posts: 131
Own Kudos:
Given Kudos: 310
Location: India
GPA: 3.46
Posts: 131
Kudos: 20
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
chetan2u
User avatar
GMAT Expert
Joined: 02 Aug 2009
Last visit: 28 Apr 2025
Posts: 11,308
Own Kudos:
40,619
 [1]
Given Kudos: 333
Status:Math and DI Expert
Products:
Expert
Expert reply
Posts: 11,308
Kudos: 40,619
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
If y is an integer, is y a prime number of the form 4k-1, where k is a positive integer

1) (7y^9+6)^2/4 is an integer
\(\frac{ (7y^9+6)^2}{4}=x\)
\( (7y^9+6)^2=4k\)
Only possible when \( (7y^9+6)^2\) is a multiple of at least 4.
That is \( 7y^9+6\) is even or y is even.
If y is even, it cannot be of the form 4k-1.
Sufficient

2) (7y^5-222)^2/8 is a positive integer, which is neither prime nor composite
Knowing \(\frac{ (7y^5-222)^2}{8}\) is an integer is sufficient as shown in statement 1.
Again y has to be even, otherwise [m] (7y^5-222)^2[m] is odd and cannot be divided by 8.
Sufficient


D
User avatar
Aryaa03
Joined: 12 Jun 2023
Last visit: 01 May 2025
Posts: 212
Own Kudos:
Given Kudos: 159
Location: India
GMAT Focus 1: 645 Q86 V81 DI78
GMAT Focus 1: 645 Q86 V81 DI78
Posts: 212
Kudos: 244
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Syumbel1
If y is an integer, is y a prime number of the form 4k-1, where k is a positive integer
1) (7y^9+6)^2/4 is an integer
2) (7y^5-222)^2/8 is a positive integer, which is neither prime nor composite

Sol: Option-D

Is y a prime number of the form 4k-1 : 3, 7, 11, ...
Stat-1:
\((7y^9+6)^2\)/4 is an integer , Therefore, \((7y^9+6)^2\) is divisible by 4 or

\((7y^9+6)^2\) = 4*p

4*p is an even number , therefore, \((7y^9+6)^2\) is even and square for a number is even only if the number is even.
This implies, \((7y^9+6)\) is even.

Odd*x + Even = Even and thus, y^9 is even. and y is even and can't be a prime of the form 4k-1
This statement is Sufficient.

Stat-2:
\((7y^5-222)^2\)/8 is a positive integer ; With same reasoning as in stat-1
\((7y^5-222)^2\) = 8*p

Odd*x-Even = Even , and thus, y^5 is even. and y is even and can't be a prime of the form 4k-1
This statement is also Sufficient.
Moderator:
Math Expert
101468 posts