GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 21 Mar 2019, 08:55 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here. ### Request Expert Reply # The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Math Expert V
Joined: 02 Sep 2009
Posts: 53768
The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|  [#permalink]

### Show Tags

9
37 00:00

Difficulty:   45% (medium)

Question Stats: 71% (02:31) correct 29% (02:50) wrong based on 1109 sessions

### HideShow timer Statistics

The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|+ 5 is equal to:

(A) –7
(B) 7
(C) 10
(D) 12
(E) 14

Kudos for a correct solution.

_________________
Math Expert V
Joined: 02 Sep 2009
Posts: 53768
Re: The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|  [#permalink]

### Show Tags

12
5
Bunuel wrote:
The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|+ 5 is equal to:

(A) –7
(B) 7
(C) 10
(D) 12
(E) 14

Kudos for a correct solution.

MANHATTAN GMAT OFFICIAL SOLUTION:

a. Unknowns: x
Given: x2 – 8x + 21 = |x – 4| + 5.
Constraints: The question implies that there may be multiple solutions, as does the non-linear given equation.
Question: What is the sum of all possible solutions for x?

b. Break into 2 equations (i.e. non-negative and negative inside absolute value sign) → Group all variables on one side of the equation, with 0 on the other → Factorable quadratic? → Factor → Solve → Answer.
Attachment: 2015-05-11_1802.png [ 55.23 KiB | Viewed 17003 times ]

Sum of the different solutions: 5 + 4 + 3 = 12.

The answer is D.

Alternatively, we could focus on the left side of the equation, which looks like a manageable quadratic, isolating the absolute value on the right:

x^2 – 8x + 21 = |x – 4| + 5
x^2 – 8x + 16 = |x – 4|
(x – 4)(x – 4) = |x – 4|
(x – 4)2 = |x – 4|

“Something squared equals its absolute value. 1 squared equals 1, 0 squared equals 0…hmm, –1 squared equals 1…”

x – 4 = –1, 0, or 1
x = 3, 4, or 5

Sum of the different solutions: 5 + 4 + 3 = 12.

d. On absolute value problems, some of the solutions might be duplicates. Just cross these off at the end. Additionally, we could check to make sure the results for each solutions satisfy the initial assumptions. For example, in Scenario 1 we assumed x – 4 ≥ 0. Both solutions, 5 and 4, satisfy this inequality. Similarly, the solutions 4 and 3 satisfy Scenario 2’s assumption, that x – 4 ≤ 0. Thus all the solutions were valid. For complex absolute value equations such as this one, this need
not always be the case.
_________________
Manager  Joined: 23 Nov 2014
Posts: 54
Location: India
GMAT 1: 730 Q49 V40 GPA: 3.14
WE: Sales (Consumer Products)
Re: The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|  [#permalink]

### Show Tags

2
3
Two cases: modulus function is positive or modulus function is negative

Positive case:

x^2-8x+21 = (x-4)+5
=> x^2-9x+20 = 0
=> x = 4 or 5

Negative case:

x^2-8x+21 = -(x-4)+5
=> x^2-7x+12 = 0
=> x = 3 or 4

=>Unique solutions: 3, 4, 5
=>Sum = 12?
##### General Discussion
Intern  Joined: 10 Jul 2014
Posts: 13
Re: The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|  [#permalink]

### Show Tags

2
1
|x-4|. |x-4| - |x-4|=0
|x-4|=0 then x=4
|x-4|=1
x=3,5
sum= 4+3+5=12
ans c
Intern  Joined: 06 Apr 2015
Posts: 5
The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|  [#permalink]

### Show Tags

1
x^2 - 8x + 16 = |x-4|

RHS can be -ve or +ve

x^2 - 9x + 20 = 0
x^2 - 7x + 12 = 0

x= 5,4,3

We test all 3 values in original equation, all ok.

Thus, Sum = 5 + 4 +3 = 12

Ans (D)

Originally posted by rajeev90 on 10 May 2015, 02:16.
Last edited by rajeev90 on 10 May 2015, 02:29, edited 1 time in total.
Manager  Joined: 07 Apr 2015
Posts: 163
The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|  [#permalink]

### Show Tags

2
x^2 - 8x + 21 = |x-4| +5

I: Positive Case
x^2 - 8x + 21 = x - 4 + 5
x^2 - 9x + 20 = 0
(x - 4) (x - 5)

x1 = 4
x2 = 5

II: Negative Case

x^2 - 8x + 21 = - |x-4| +5
x^2 - 8x + 21 = -x + 4 + 5
x^2 - 7x + 12 = 0
(x - 3) (x - 4)
x3 = 3
x4 = 4 (cancel out as 3 is already listed as x1)

3 + 4 + 5 = 12

Director  P
Joined: 21 May 2013
Posts: 658
Re: The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|  [#permalink]

### Show Tags

Bunuel wrote:
The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|+ 5 is equal to:

(A) –7
(B) 7
(C) 10
(D) 12
(E) 14

Kudos for a correct solution.

Now, we can have 2 situations here
Situation 1:x^2-8x+21=x-4+5
x^2-8x+21-x-5+4=x^2-9x+20
x^2-5x-4x+20
x=5 or x=4
Testing both values in the equation, both satisfy

Situation 2:x^2-8x+21=-x+4+5
x^2-7x+12=0
x^-3x-4x+12=0
x=3 or x=4
Testing both values in the equation, both satisfy
Therefor sum of all solutions=3+4+5=12
Intern  Joined: 23 Sep 2015
Posts: 39
Re: The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|  [#permalink]

### Show Tags

why do we take x-4>=0 and x-4<=0 .....and not x-4>0 and x-4<0....thanks in advance.

Bunuel wrote:
Bunuel wrote:
The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|+ 5 is equal to:

(A) –7
(B) 7
(C) 10
(D) 12
(E) 14

Kudos for a correct solution.

MANHATTAN GMAT OFFICIAL SOLUTION:

a. Unknowns: x
Given: x2 – 8x + 21 = |x – 4| + 5.
Constraints: The question implies that there may be multiple solutions, as does the non-linear given equation.
Question: What is the sum of all possible solutions for x?

b. Break into 2 equations (i.e. non-negative and negative inside absolute value sign) → Group all variables on one side of the equation, with 0 on the other → Factorable quadratic? → Factor → Solve → Answer.
Attachment:
2015-05-11_1802.png

Sum of the different solutions: 5 + 4 + 3 = 12.

The answer is D.

Alternatively, we could focus on the left side of the equation, which looks like a manageable quadratic, isolating the absolute value on the right:

x^2 – 8x + 21 = |x – 4| + 5
x^2 – 8x + 16 = |x – 4|
(x – 4)(x – 4) = |x – 4|
(x – 4)2 = |x – 4|

“Something squared equals its absolute value. 1 squared equals 1, 0 squared equals 0…hmm, –1 squared equals 1…”

x – 4 = –1, 0, or 1
x = 3, 4, or 5

Sum of the different solutions: 5 + 4 + 3 = 12.

d. On absolute value problems, some of the solutions might be duplicates. Just cross these off at the end. Additionally, we could check to make sure the results for each solutions satisfy the initial assumptions. For example, in Scenario 1 we assumed x – 4 ≥ 0. Both solutions, 5 and 4, satisfy this inequality. Similarly, the solutions 4 and 3 satisfy Scenario 2’s assumption, that x – 4 ≤ 0. Thus all the solutions were valid. For complex absolute value equations such as this one, this need
not always be the case.
Manager  S
Joined: 24 Dec 2016
Posts: 96
Location: India
Concentration: Finance, General Management
WE: Information Technology (Computer Software)
Re: The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|  [#permalink]

### Show Tags

Bunuel wrote:
Bunuel wrote:
The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|+ 5 is equal to:

(A) –7
(B) 7
(C) 10
(D) 12
(E) 14

Kudos for a correct solution.

MANHATTAN GMAT OFFICIAL SOLUTION:

a. Unknowns: x
Given: x2 – 8x + 21 = |x – 4| + 5.
Constraints: The question implies that there may be multiple solutions, as does the non-linear given equation.
Question: What is the sum of all possible solutions for x?

b. Break into 2 equations (i.e. non-negative and negative inside absolute value sign) → Group all variables on one side of the equation, with 0 on the other → Factorable quadratic? → Factor → Solve → Answer.
Attachment:
2015-05-11_1802.png

Sum of the different solutions: 5 + 4 + 3 = 12.

The answer is D.

Alternatively, we could focus on the left side of the equation, which looks like a manageable quadratic, isolating the absolute value on the right:

x^2 – 8x + 21 = |x – 4| + 5
x^2 – 8x + 16 = |x – 4|
(x – 4)(x – 4) = |x – 4|
(x – 4)2 = |x – 4|

“Something squared equals its absolute value. 1 squared equals 1, 0 squared equals 0…hmm, –1 squared equals 1…”

x – 4 = –1, 0, or 1
x = 3, 4, or 5

Sum of the different solutions: 5 + 4 + 3 = 12.

d. On absolute value problems, some of the solutions might be duplicates. Just cross these off at the end. Additionally, we could check to make sure the results for each solutions satisfy the initial assumptions. For example, in Scenario 1 we assumed x – 4 ≥ 0. Both solutions, 5 and 4, satisfy this inequality. Similarly, the solutions 4 and 3 satisfy Scenario 2’s assumption, that x – 4 ≤ 0. Thus all the solutions were valid. For complex absolute value equations such as this one, this need
not always be the case.

Hi Bunuel,

I have a conceptual doubt wrt such questions.
Like most people above have, I also solved for the x>0 and x<0 cases and got the roots as 4,5 for x>0 and 3,4 for x<0.
As we were considering case x<0 which doesn't get satisfied with the roots 3 and 4, I discarded those. Is that not right to do ?

Shruti.
VP  D
Status: Learning
Joined: 20 Dec 2015
Posts: 1024
Location: India
Concentration: Operations, Marketing
GMAT 1: 670 Q48 V36 GRE 1: Q157 V157 GPA: 3.4
WE: Engineering (Manufacturing)
Re: The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|  [#permalink]

### Show Tags

IMO D
there will be two equations taking into account the two possible value of LHS i.e positive and negative .
The solution we will have 3 different values of the solutions
3,4 and 5
Total =12

Sent from my ONE E1003 using GMAT Club Forum mobile app
_________________

Please give kudos if you found my answers useful

Veritas Prep GMAT Instructor D
Joined: 16 Oct 2010
Posts: 8998
Location: Pune, India
Re: The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|  [#permalink]

### Show Tags

6
2
Bunuel wrote:
The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|+ 5 is equal to:

(A) –7
(B) 7
(C) 10
(D) 12
(E) 14

Kudos for a correct solution.

My first thought here is that I want to separate out the absolute value. I see that I have a constant term on the left hand side too. So the first step is

$$x^2 - 8x + 21 - 5 = |x - 4|$$

$$x^2 - 8x + 16 = |x - 4|$$

$$(x - 4)^2 = |x - 4|$$

which is the same as

$$|x - 4|^2 = |x - 4|$$

|x - 4| * (|x - 4| - 1) = 0

|x - 4| = 0
implies x = 4

or

|x - 4| = 1
implies x = 3 or 5

Total sum = 3+ 4+ 5 = 12
_________________

Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

Veritas Prep GMAT Instructor D
Joined: 16 Oct 2010
Posts: 8998
Location: Pune, India
Re: The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|  [#permalink]

### Show Tags

2
Shruti0805 wrote:
Bunuel wrote:
Bunuel wrote:
The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|+ 5 is equal to:

(A) –7
(B) 7
(C) 10
(D) 12
(E) 14

Kudos for a correct solution.

MANHATTAN GMAT OFFICIAL SOLUTION:

a. Unknowns: x
Given: x2 – 8x + 21 = |x – 4| + 5.
Constraints: The question implies that there may be multiple solutions, as does the non-linear given equation.
Question: What is the sum of all possible solutions for x?

b. Break into 2 equations (i.e. non-negative and negative inside absolute value sign) → Group all variables on one side of the equation, with 0 on the other → Factorable quadratic? → Factor → Solve → Answer.
Attachment:
2015-05-11_1802.png

Sum of the different solutions: 5 + 4 + 3 = 12.

The answer is D.

Alternatively, we could focus on the left side of the equation, which looks like a manageable quadratic, isolating the absolute value on the right:

x^2 – 8x + 21 = |x – 4| + 5
x^2 – 8x + 16 = |x – 4|
(x – 4)(x – 4) = |x – 4|
(x – 4)2 = |x – 4|

“Something squared equals its absolute value. 1 squared equals 1, 0 squared equals 0…hmm, –1 squared equals 1…”

x – 4 = –1, 0, or 1
x = 3, 4, or 5

Sum of the different solutions: 5 + 4 + 3 = 12.

d. On absolute value problems, some of the solutions might be duplicates. Just cross these off at the end. Additionally, we could check to make sure the results for each solutions satisfy the initial assumptions. For example, in Scenario 1 we assumed x – 4 ≥ 0. Both solutions, 5 and 4, satisfy this inequality. Similarly, the solutions 4 and 3 satisfy Scenario 2’s assumption, that x – 4 ≤ 0. Thus all the solutions were valid. For complex absolute value equations such as this one, this need
not always be the case.

Hi Bunuel,

I have a conceptual doubt wrt such questions.
Like most people above have, I also solved for the x>0 and x<0 cases and got the roots as 4,5 for x>0 and 3,4 for x<0.
As we were considering case x<0 which doesn't get satisfied with the roots 3 and 4, I discarded those. Is that not right to do ?

Shruti.

Responding to a pm:

The ranges for which you are solving are not x > 0 and x < 0. They are x >= 4 and x < 4 because

we say that
|a| = a when a >= 0
|a| = -a when a < 0

So
|x - 4| = (x - 4) when (x - 4) >= 0 i.e. x >= 4
|x - 4| = -(x - 4) when (x - 4) < 0 i.e. x < 4

For more on this, check: https://www.veritasprep.com/blog/2014/0 ... -the-gmat/
_________________

Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

CEO  V
Joined: 12 Sep 2015
Posts: 3515
Re: The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|  [#permalink]

### Show Tags

1
Top Contributor
Bunuel wrote:
The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|+ 5 is equal to:

(A) –7
(B) 7
(C) 10
(D) 12
(E) 14

There are 3 steps to solving equations involving ABSOLUTE VALUE:
1. Apply the rule that says: If |x| = k, then x = k and/or x = -k
2. Solve the resulting equations
3. Plug solutions into original equation to check for extraneous roots

Given: x² – 8x + 21 = |x – 4|+ 5
Subtract 5 from both sides: x² – 8x + 16 = |x – 4|
Apply above rule

We get two cases: x² – 8x + 16 = x – 4 and -(x² – 8x + 16) = x – 4

x² – 8x + 16 = x – 4
Add 4 to both sides: x² – 8x + 20 = x
Subtract x from both sides: x² – 9x + 20 = 0
Factor: (x - 5)(x - 4) = 0
So, x = 5 or x = 4

-(x² – 8x + 16) = x – 4
Simplify: -x² + 8x - 16 = x – 4
Add 4 to both sides: -x² + 8x - 12 = x
Subtract x from both sides: -x² + 7x - 12 = 0
Multiply both sides by -1 to get: x² - 7x + 12 = 0
Factor: (x - 3)(x - 4) = 0
So, x = 3 or x = 4

We have three potential solutions: x = 5, x = 4 and x = 3

Now let's test for EXTRANEOUS ROOTS

x = 5
Plug into original equation to get:
5² – 8(5) + 21 = |5 – 4|+ 5
Evaluate: 6 = 6
WORKS! So, x = 5 IS a valid solution

x = 4
Plug into original equation to get:
4² – 8(4) + 21 = |4 – 4|+ 5
Evaluate: 5 = 5
WORKS! So, x = 4 is a valid solution

x = 3
Plug into original equation to get:
3² – 8(3) + 21 = |3 – 4|+ 5
Evaluate: 6 = 6
WORKS! So, x = 3 is a valid solution

SUM of all solutions = 5 + 4 + 3 = 12

RELATED VIDEO

_________________

Test confidently with gmatprepnow.com Manager  B
Joined: 26 Jul 2011
Posts: 85
Location: India
WE: Marketing (Manufacturing)
Re: The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|  [#permalink]

### Show Tags

let me ask a lame question...

x^2-8x+21=|x-4|+5
x^2-8x+21-5=|x-4|
x^2-8x+16=|x-4|

(x-4)(x-4)=|x-4|

Now Scenario 1 where |x-4| is positive

(x-4)(x-4)=(x-4)
(x-4) = (x-4)/(x-4) ------> (x-4)=1-----> x = 5

Scenario 2 where |x-4| is negative
(x-4)(x-4)=-(x-4)---------> (x-4)=-(x-4)/(x-4)----------> (x-4)=-1--------> x = 3

So i have only two solutions x=5 and x=3...Why am I getting only 2 solutions ? while there are 3...

I know I am doing something very stupid with the basics. Can somebody please point out what is it ?
Math Expert V
Joined: 02 Sep 2009
Posts: 53768
Re: The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|  [#permalink]

### Show Tags

ratinarace wrote:
let me ask a lame question...

x^2-8x+21=|x-4|+5
x^2-8x+21-5=|x-4|
x^2-8x+16=|x-4|

(x-4)(x-4)=|x-4|

Now Scenario 1 where |x-4| is positive

(x-4)(x-4)=(x-4)
(x-4) = (x-4)/(x-4) ------> (x-4)=1-----> x = 5

Scenario 2 where |x-4| is negative
(x-4)(x-4)=-(x-4)---------> (x-4)=-(x-4)/(x-4)----------> (x-4)=-1--------> x = 3

So i have only two solutions x=5 and x=3...Why am I getting only 2 solutions ? while there are 3...

I know I am doing something very stupid with the basics. Can somebody please point out what is it ?

You cannot reduce (x-4)(x-4)=(x-4) by x-4 because x-4 can be 0 and we cannot divide by 0. By doing so you loose a root, namely x = 4.

Never reduce equation by variable (or expression with variable), if you are not certain that variable (or expression with variable) doesn't equal to zero. We can not divide by zero.
_________________
Director  P
Joined: 13 Mar 2017
Posts: 704
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3.8
WE: Engineering (Energy and Utilities)
Re: The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|  [#permalink]

### Show Tags

Bunuel wrote:
The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|+ 5 is equal to:

(A) –7
(B) 7
(C) 10
(D) 12
(E) 14

Kudos for a correct solution.

x^2 – 8x + 21 = |x – 4|+ 5

If x>=4,
x^2 – 8x + 21 = x – 4+ 5
-> x^2 – 8x + 21 = x+1
-> x^2 - 9x + 20 = 0
-> (x-4) (x-5) = 0
-> x =4,5

If x<4 ,
x^2 – 8x + 21 = 4-x +5 = 9-x
x^2 - 7x + 12 = 0
(x-4)(x-3) =0
-> x=3

Total sum = 3+4+5= 12
_________________

CAT 2017 (98.95) & 2018 (98.91) : 99th percentiler
UPSC Aspirants : Get my app UPSC Important News Reader from Play store.

MBA Social Network : WebMaggu

Appreciate by Clicking +1 Kudos ( Lets be more generous friends.)

What I believe is : "Nothing is Impossible, Even Impossible says I'm Possible" : "Stay Hungry, Stay Foolish".

Director  S
Joined: 12 Nov 2016
Posts: 724
Location: United States
Schools: Yale '18
GMAT 1: 650 Q43 V37 GRE 1: Q157 V158 GPA: 2.66
Re: The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|  [#permalink]

### Show Tags

Bunuel wrote:
The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|+ 5 is equal to:

(A) –7
(B) 7
(C) 10
(D) 12
(E) 14

Kudos for a correct solution.

Two basic ways to write out absolute values for the GMAT

l x -4 l

x - 4 =
- l x -4 l =
Non-Human User Joined: 09 Sep 2013
Posts: 10166
Re: The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|  [#permalink]

### Show Tags

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________ Re: The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|   [#permalink] 10 Sep 2018, 08:12
Display posts from previous: Sort by

# The sum of all solutions for x in the equation x^2 – 8x + 21 = |x – 4|

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.  