Last visit was: 18 Nov 2025, 15:50 It is currently 18 Nov 2025, 15:50
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
Sub 505 Level|   Word Problems|                           
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,069
 [21]
4
Kudos
Add Kudos
16
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
NoHalfMeasures
User avatar
Retired Moderator
Joined: 29 Oct 2013
Last visit: 11 Jul 2023
Posts: 220
Own Kudos:
2,479
 [12]
Given Kudos: 204
Concentration: Finance
GPA: 3.7
WE:Corporate Finance (Retail Banking)
Posts: 220
Kudos: 2,479
 [12]
9
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,069
 [10]
7
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
General Discussion
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
778,069
 [3]
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,069
 [3]
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
runningguy
Bunuel
cumulonimbus


Hi Bunnel,

I marked this one as B, as i thought that by prime factorization we can get the number of multiples of 15 and 18.
However i later did the prime factorization and now know that their is no way of knowing how many times 15 or 18 goes in to 38,700.

I remembered this technique as I had used it in Problem Solving, so want to know whether this technique can be used in DS questions.

What technique are you talking about? Can you please also give PS question for which you've used it?

I did the same thing and marked B. How can we tell quickly that there are multiple answers for 5x + 6y = 12900?


Trial and error plus some logic and knowledge of basics of number properties should help you to identify this.

For more on this type of questions check:
eunice-sold-several-cakes-if-each-cake-sold-for-either-109602.html
martha-bought-several-pencils-if-each-pencil-was-either-a-100204.html
a-rental-car-agency-purchases-fleet-vehicles-in-two-sizes-a-105682.html
joe-bought-only-twenty-cent-stamps-and-thirty-cent-stamps-106212.html
a-certain-fruit-stand-sold-apples-for-0-70-each-and-bananas-101966.html
joanna-bought-only-0-15-stamps-and-0-29-stamps-how-many-101743.html

Hope it helps.
avatar
indiheats
Joined: 04 Nov 2012
Last visit: 16 Nov 2013
Posts: 2
Own Kudos:
Posts: 2
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
SOLUTION

A citrus fruit grower receives $15 for each crate of oranges shipped and $18 for each crate of grapefruit shipped. How many crates of oranges did the grower ship last week?

Let \(x\) be the # of oranges and \(y\) the # of grapefruits. Note that, both \(x\) and \(y\) must be integers.
Question: \(x=?\)

(1) Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped --> \(x=2y+20\). Not sufficient to calculate \(x\)

(2) Last week the grower received a total of $38,700 from the crates of oranges and grapefruit shipped --> \(15x+18y=38700\) --> \(5x+6y=12900\). Multiple values are possible, for istance: \(x=180\) and \(y=2000\) OR \(x=60\) and \(y=2100\).

(1)+(2) We have two distinct linear equation with two unknowns, hence we can solve for \(x\) and \(y\). Sufficient.

Answer: C.


Hi Banuel,

I get hung up on when i create the equation 15x + 18y = 38700.... When I see a equation like this, should i automatically assume that mutiple combinations of x and y are possible to satisfy the equation or are there instances where I should actually work out the math.... I spend a lot of time contemplating this, although I see the obvious answer in C of two liner equations...

thoughts?

Thanks
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
778,069
 [3]
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,069
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
indiheats
Bunuel
SOLUTION

A citrus fruit grower receives $15 for each crate of oranges shipped and $18 for each crate of grapefruit shipped. How many crates of oranges did the grower ship last week?

Let \(x\) be the # of oranges and \(y\) the # of grapefruits. Note that, both \(x\) and \(y\) must be integers.
Question: \(x=?\)

(1) Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped --> \(x=2y+20\). Not sufficient to calculate \(x\)

(2) Last week the grower received a total of $38,700 from the crates of oranges and grapefruit shipped --> \(15x+18y=38700\) --> \(5x+6y=12900\). Multiple values are possible, for istance: \(x=180\) and \(y=2000\) OR \(x=60\) and \(y=2100\).

(1)+(2) We have two distinct linear equation with two unknowns, hence we can solve for \(x\) and \(y\). Sufficient.

Answer: C.


Hi Banuel,

I get hung up on when i create the equation 15x + 18y = 38700.... When I see a equation like this, should i automatically assume that mutiple combinations of x and y are possible to satisfy the equation or are there instances where I should actually work out the math.... I spend a lot of time contemplating this, although I see the obvious answer in C of two liner equations...

thoughts?

Thanks

Generally, such kinds of linear equations (ax+by=c) have infinitely many solutions for x and y, and we cannot get single numerical values for the variables. But since x and y here represent the number of oranges and the number of grapefruits, they must be non-negative integers. In this case, 15x + 18y = 38700 is no longer a simple linear equation; it's a Diophantine equation (equations whose solutions must be integers only). For such kinds of equations, there might be only one combination of x and y possible to satisfy it. When you encounter such problems, you must always check by trial and error whether that's the case.

In my post above, there are links to several such problems.
User avatar
malkadhi
Joined: 15 Sep 2015
Last visit: 03 Dec 2015
Posts: 7
Own Kudos:
31
 [8]
Given Kudos: 3
Posts: 7
Kudos: 31
 [8]
8
Kudos
Add Kudos
Bookmarks
Bookmark this Post
indiheats



Hi Banuel,

I get hung up on when i create the equation 15x + 18y = 38700.... When I see a equation like this, should i automatically assume that mutiple combinations of x and y are possible to satisfy the equation or are there instances where I should actually work out the math.... I spend a lot of time contemplating this, although I see the obvious answer in C of two liner equations...

thoughts?

Thanks


Your thought process should be how can we make these numbers more manageable. 15 and 18 both share 3 as a factor, but 38700 looks pretty gnarly. A quick check confirms that 3 is a factor, 3+8+7=18, which is divisible by 3

Now we have the equation in something easier to work with 5x + 6y = 12,900.

It still looks pretty daunting. So here's my thought process, what two values when added give us 12,900, in other words, we're asking what gives us 12,000 + 900

So that equation now becomes, 5x+6y = 12,000 + 900
Can we get an x such that we get 12,000 or 900. Yes.
Can we get a y such that we can get 12,000 or 900. Yes. 120 is divisible by 6, and 90 is divisible by 6.

What does that mean for us?
Well, we can have a case x=2,400 and G = 150
5*2400 + 6*150 = 12,900

OR
We can have a case where x=180 and G= 2000

5*180 + 6*2000 = 12,900

You don't have to actually do the arithmetic. Just do a quick sense check, can we have multiple values for x and y, such that we can get 12000 + 900. Use divisibility rules, if x can give us either 900 or 12000 when multiplied by 5, both are divisible by 5, and if Y can give us either 12000 or 900 when multiplied by 6. Both are divisible by 6. So we can get different values for x and y, and still satisfy 12,900.

Hope that helped someone, I know this post is a bit dated.
User avatar
MathRevolution
User avatar
Math Revolution GMAT Instructor
Joined: 16 Aug 2015
Last visit: 27 Sep 2022
Posts: 10,070
Own Kudos:
Given Kudos: 4
GMAT 1: 760 Q51 V42
GPA: 3.82
Expert
Expert reply
GMAT 1: 760 Q51 V42
Posts: 10,070
Kudos: 19,389
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.

A citrus fruit grower receives $15 for each crate of oranges shipped and $18 for each crate of grapefruit shipped. How many crates of oranges did the grower ship last week?

(1) Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped.
(2) Last week the grower received a total of $38,700 from the crates of oranges and grapefruit shipped.

We get a "2by2" table as below:
Attachment:
GCDS Bunuel A citrus fruit grower receives (20151125).jpg
GCDS Bunuel A citrus fruit grower receives (20151125).jpg [ 24.76 KiB | Viewed 29416 times ]

There are 2 variables (a,b) and 2 equations are given by the 2 conditions, so there is high chance (C) will be the answer.
If we look at the conditions together,

from a=2b+20, 15a+18b=38,700, we can get the values of a and b, so this is sufficient, and the answer becomes (C).

For cases where we need 2 more equations, such as original conditions with “2 variables”, or “3 variables and 1 equation”, or “4 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 70% chance that C is the answer, while E has 25% chance. These two are the majority. In case of common mistake type 3,4, the answer may be from A, B or D but there is only 5% chance. Since C is most likely to be the answer using 1) and 2) separately according to DS definition (It saves us time). Obviously there may be cases where the answer is A, B, D or E.
User avatar
JeffTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 04 Mar 2011
Last visit: 05 Jan 2024
Posts: 2,977
Own Kudos:
Given Kudos: 1,646
Status:Head GMAT Instructor
Affiliations: Target Test Prep
Expert
Expert reply
Posts: 2,977
Kudos: 8,387
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
A citrus fruit grower receives $15 for each crate of oranges shipped and $18 for each crate of grapefruit shipped. How many crates of oranges did the grower ship last week?

(1) Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped.
(2) Last week the grower received a total of $38,700 from the crates of oranges and grapefruit shipped.

We are given that a citrus grower receives $15 for each crate of oranges shipped and $18 for each crate of grapefruit shipped. We can define some variables for the number of crates of oranges shipped and the number of crates of grapefruit shipped.

Let R = the number of crates of oranges shipped and G = the number of crates of grapefruit shipped.

We need to determine the value of R.

Statement One Alone:

Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped.

Using statement one we can set up the following equation:

R = 20 + 2G

We cannot determine the value of R, so statement one is not sufficient to answer the question. We can eliminate answer choices A and D.

Statement Two Alone:

Last week the grower received a total of $38,700 from the crates of oranges and grapefruit shipped.

From statement two we can set up the following equation:

15R + 18G = 38,700

We cannot determine the value of R, so statement two is not sufficient to answer the question. We can eliminate answer choice B.

Statements One and Two Together:

From statements one and two we have the following equations:

1) R = 20 + 2G

2) 15R + 18G = 38,700

We can simplify the second equation by dividing the entire equation by 3:

3) 5R + 6G = 12,900

At this point we substitute (20 + 2G) from equation (1) for R in equation (3), giving us:

5(20 + 2G) + 6G = 12,900

Now, at this point, we know we can determine a value for G and thus determine a value for R. If we were taking the actual test, we could stop at this point and say that the answer is C. However, let’s finish the math to show the steps in evaluating R.

100 + 10G + 6G = 12,900

100 + 16G = 12,900

G = 12,800/16

G = 800

Since R = 20 + 2G, R = 20 + 2(800) = 1,620.

Answer: C
avatar
mlwells9
Joined: 02 May 2018
Last visit: 29 May 2018
Posts: 3
Own Kudos:
Given Kudos: 6
Location: United States
GPA: 3.3
Posts: 3
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel Statement 1 alone appears to be sufficient to me. The question implies 2 equations: 15x = Gross Revenue in one week from oranges and 18g = Gross Revenue in one week from grapefruit. So, embedded in the question is a system of equations.

Then, from Statement 1 we learn that x = 2g + 20. Well, 15x = Revenue. So, I can solve for x in terms of g, right? Thus, 15 (2g + 20) = R; Thus, 30g + 300 = R. g = 10, g being the number of grapefruit.

I can put that number back into the equation denoting the relationship given in Statement 1 which was x = 2g + 20. Thus, x = 2(10) = 20; x = 40. There are 40 crates of oranges that were shipped last week.

Statement 1 alone is sufficient. How am I wrong, please tell me?



Bunuel
SOLUTION

A citrus fruit grower receives $15 for each crate of oranges shipped and $18 for each crate of grapefruit shipped. How many crates of oranges did the grower ship last week?

Let \(x\) be the # of oranges and \(y\) the # of grapefruits. Note that, both \(x\) and \(y\) must be integers.
Question: \(x=?\)

(1) Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped --> \(x=2y+20\). Not sufficient to calculate \(x\)

(2) Last week the grower received a total of $38,700 from the crates of oranges and grapefruit shipped --> \(15x+18y=38700\) --> \(5x+6y=12900\). Multiple values are possible, for istance: \(x=180\) and \(y=2000\) OR \(x=60\) and \(y=2100\).

(1)+(2) We have two distinct linear equation with two unknowns, hence we can solve for \(x\) and \(y\). Sufficient.

Answer: C.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,069
Kudos
Add Kudos
Bookmarks
Bookmark this Post
mlwells9
Bunuel Statement 1 alone appears to be sufficient to me. The question implies 2 equations: 15x = Gross Revenue in one week from oranges and 18g = Gross Revenue in one week from grapefruit. So, embedded in the question is a system of equations.

Then, from Statement 1 we learn that x = 2g + 20. Well, 15x = Revenue. So, I can solve for x in terms of g, right? Thus, 15 (2g + 20) = R; Thus, 30g + 300 = R. g = 10, g being the number of grapefruit.

I can put that number back into the equation denoting the relationship given in Statement 1 which was x = 2g + 20. Thus, x = 2(10) = 20; x = 40. There are 40 crates of oranges that were shipped last week.

Statement 1 alone is sufficient. How am I wrong, please tell me?



Bunuel
SOLUTION

A citrus fruit grower receives $15 for each crate of oranges shipped and $18 for each crate of grapefruit shipped. How many crates of oranges did the grower ship last week?

Let \(x\) be the # of oranges and \(y\) the # of grapefruits. Note that, both \(x\) and \(y\) must be integers.
Question: \(x=?\)

(1) Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped --> \(x=2y+20\). Not sufficient to calculate \(x\)

(2) Last week the grower received a total of $38,700 from the crates of oranges and grapefruit shipped --> \(15x+18y=38700\) --> \(5x+6y=12900\). Multiple values are possible, for istance: \(x=180\) and \(y=2000\) OR \(x=60\) and \(y=2100\).

(1)+(2) We have two distinct linear equation with two unknowns, hence we can solve for \(x\) and \(y\). Sufficient.

Answer: C.

For (1) we have only one equation: \(x=2y+20\) and we need to find x.

How you are getting that g = 10 from 30g + 300 = R?
User avatar
ShafqatHussain
Joined: 01 Nov 2024
Last visit: 11 Oct 2025
Posts: 4
Given Kudos: 9
Location: Bangladesh
Posts: 4
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I can see the questions in data sufficiency section but I see no options mentioned here. why is this happening?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,069
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ShafqatHussain
I can see the questions in data sufficiency section but I see no options mentioned here. why is this happening?

You should now that options for DS questions are always the same and usually omitted on the site.

The data sufficiency problem consists of a question and two statements, labeled (1) and (2), in which certain data are given. You have to decide whether the data given in the statements are sufficient for answering the question. Using the data given in the statements, plus your knowledge of mathematics and everyday facts (such as the number of days in July or the meaning of the word counterclockwise), you must indicate whether—

A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient to answer the question asked.
B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient to answer the question asked.
C. BOTH statements (1) and (2) TOGETHER are sufficient to answer the question asked, but NEITHER statement ALONE is sufficient to answer the question asked.
D. EACH statement ALONE is sufficient to answer the question asked.
E. Statements (1) and (2) TOGETHER are NOT sufficient to answer the question asked, and additional data specific to the problem are needed.

I suggest you to go through the following post ALL YOU NEED FOR QUANT.

Hope this helps.­
Moderators:
Math Expert
105355 posts
496 posts