imhimanshu wrote:
If m, p, s and v are positive, and \(\frac{m}{p} <\frac{s}{v}\), which of the following must be between \(\frac{m}{p}\) and \(\frac{s}{v}\)
I. \(\frac{m+s}{p+v}\)
II. \(\frac{ms}{pv}\)
III. \(\frac{s}{v} - \frac{m}{p}\)
A. None
B. I only
C. II only
D. III only
E. I and II both
The key word here is MUST.
So, if we can show that a certain statement is NOT TRUE we can eliminate some answer choices.
GIVEN: m/p < s/vSo, let's see what happens when m = 1, p = 3, s = 1 and v = 2
We get the inequality: 1/3 < 1/2, which works.
Now test the 3 statements:
I) (m+s)/(p+v) = (1+1)/(3+2) = 2/5
Since it IS the case that 1/3 < 2/5 < 1/2, statement I COULD be true
II) ms/pv = (1)(1)/(3)(2) = 1/6
Here, 1/6 < 1/3 < 1/2
In other words, 1/6 is NOT between 1/3 and 1/6
So, statement II need not be true.
ELIMINATE II
III) s/v - m/p = 1/2 - 1/3 = 1/6
Here, 1/6 < 1/3 < 1/2
In other words, 1/6 is NOT between 1/3 and 1/6
So, statement III need not be true.
ELIMINATE III
At this point, only answer choices A and B remain.
We COULD try testing more values in the hopes that statement I may not be true.
Or we can try to convince ourselves that statement I IS true.
Let's try the latter.
I) (m+s)/(p+v)
Is it the case that (m+s)/(p+v) is BETWEEN m/p and s/v?
Let's first see whether (m+s)/(p+v) < s/v
Since v is POSITIVE, we can safely multiply both sides by v to get: v(m+s)/(p+v) < s
Since (p+v) is POSITIVE, we can safely multiply both sides by (p+v) to get: v(m+s) < s(p+v)
Expand to get: vm + sv < sp + sv
Subtract sv to get: vm < sp
Divide both sides by p to get: vm/p < s
Divide both sides by v to get: m/p < s/v
So, our (m+s)/(p+v) < s/v turns into the inequality m/p < s/v, which is GIVEN information.
Since we know that the inequality m/p < s/v is true, it must also be the case that the inequality (m+s)/(p+v) < s/v is also true
Using the same technique to show that m/p < (m+s)/(p+v) [I'll leave it to you to do that
]
Since we can show that m/p < (m+s)/(p+v) < s/v, we can conclude that statement I is true.
Answers: B
Cheers,
Brent
_________________
Brent Hanneson – Creator of gmatprepnow.com
I’ve spent the last 20 years helping students overcome their difficulties with GMAT math, and the biggest thing I’ve learned is…
Students often get questions wrong NOT because they lack the skills to solve the question, but because they don’t understand what the GMAT is testing Learn more