GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 20 Nov 2018, 15:55

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in November
PrevNext
SuMoTuWeThFrSa
28293031123
45678910
11121314151617
18192021222324
2526272829301
Open Detailed Calendar
  • All GMAT Club Tests are Free and open on November 22nd in celebration of Thanksgiving Day!

     November 22, 2018

     November 22, 2018

     10:00 PM PST

     11:00 PM PST

    Mark your calendars - All GMAT Club Tests are free and open November 22nd to celebrate Thanksgiving Day! Access will be available from 0:01 AM to 11:59 PM, Pacific Time (USA)
  • Free lesson on number properties

     November 23, 2018

     November 23, 2018

     10:00 PM PST

     11:00 PM PST

    Practice the one most important Quant section - Integer properties, and rapidly improve your skills.

If m, p, s and v are positive, and m/p < s/v, which of the following

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Manager
Manager
avatar
B
Joined: 03 May 2014
Posts: 161
Location: India
WE: Sales (Mutual Funds and Brokerage)
Re: If m, p, s and v are positive, and m/p < s/v, which of the following  [#permalink]

Show Tags

New post 01 Oct 2017, 04:19
Picking nos is the best approach.
m,p,s & v are +ve.
m/p<s/v.
Let m/p=1/2=0.5 ie m=1, p=2
and s/v=4/5=0.8 ie s=4 and v=5
0.5<0.8
Plugin the values in the answer choices.
I. (m+s)/(p+v)=(1+4)/(2+5)=5/7=0.71 this is between 0.5 and 0.8
II. ms/pv=4/10=0.4 not between 0.5 and 0.8
III. s/v−m/p=4/5-1/2=0.3 again not between 0.5 and 0.8.
Target Test Prep Representative
User avatar
P
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 4170
Location: United States (CA)
Re: If m, p, s and v are positive, and m/p < s/v, which of the following  [#permalink]

Show Tags

New post 08 Dec 2017, 10:28
imhimanshu wrote:
If m, p, s and v are positive, and \(\frac{m}{p} <\frac{s}{v}\), which of the following must be between \(\frac{m}{p}\) and \(\frac{s}{v}\)

I. \(\frac{m+s}{p+v}\)
II. \(\frac{ms}{pv}\)
III. \(\frac{s}{v} - \frac{m}{p}\)

A. None
B. I only
C. II only
D. III only
E. I and II both


Let’s analyze each statement using specific values for the variables.

We can let m = 2, s = 3, p = 4, and v = 5. Thus:

m/p = 2/4 = 0.5 and s/v = 3/5 = 0.6.

Notice that m/p = 0.5 is less than s/v = 0.6. Now let’s analyze each statement.

I. (m+s)/(p+v)

(2 + 3)/(4 + 5) = 5/9 = 0.555… is between m/p = 0.5 and s/v = 0.6.

II. (ms)/(pv)

(2 x 3)/(4 x 5) = 6/20 = 0.3 is NOT between 0.5 and 0.6.

III. s/v - m/p

3/5 - 2/4 = 0.6 - 0.5 = 0.1 is NOT between 0.5 and 0.6.

From the above, we see that only statement I is true. However, this was illustrated by using one set of numbers (m = 2, s = 3, p = 4, and v = 5). It’s possible that it could be false when we use another set of values for m, s, p, and m.

However, we can prove that (m+s)/(p+v) is between m/p and s/v; that is, we can prove that m/p < (m+s)/(p+v) < s/v regardless of the values we use for m, s, p, and m, as long as the values are positive.

Notice that m/p < (m+s)/(p+v) < s/v means m/p < (m+s)/(p+v) and (m+s)/(p+v) < s/v. Also, keep in mind that we are given that m/p < s/v, which is equivalent to mv < ps.

Let’s prove that m/p < (m+s)/(p+v):

m/p < (m+s)/(p+v) ?

m(p+v) < p(m + s) ?

mp + mv < mp + ps?

mv < ps ? (YES)

Since mv < ps is true, m/p < (m+s)/(p+v) is true. Finally, let’s prove that (m+s)/(p+v) < s/v:

(m+s)/(p+v) < s/v ?

v(m+s) < s(p+v)?

mv + sv < sp + sv ?

mv < ps ? (YES)

Again, since mv < ps is true, (m+s)/(p+v) < s/v is true. Thus we have shown that m/p < (m+s)/(p+v) < s/v is always true.

Answer: B
_________________

Scott Woodbury-Stewart
Founder and CEO

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Senior Manager
Senior Manager
avatar
S
Joined: 29 Jun 2017
Posts: 431
Re: If m, p, s and v are positive, and m/p < s/v, which of the following  [#permalink]

Show Tags

New post 22 Dec 2017, 08:29
imhimanshu wrote:
If m, p, s and v are positive, and \(\frac{m}{p} <\frac{s}{v}\), which of the following must be between \(\frac{m}{p}\) and \(\frac{s}{v}\)

I. \(\frac{m+s}{p+v}\)

II. \(\frac{ms}{pv}\)

III. \(\frac{s}{v} - \frac{m}{p}\)


A. None
B. I only
C. II only
D. III only
E. I and II both


THIS IS HARD
the point tested here is that we need to change from ratio from to factor form
m/p<s/v
multiple two sides with s.v
mv<sp

from this point you can solve the problem.
Intern
Intern
avatar
B
Joined: 24 Oct 2017
Posts: 7
Re: If m, p, s and v are positive, and m/p < s/v, which of the following  [#permalink]

Show Tags

New post 07 Jan 2018, 05:02
One very easy way to make I correct is as below
Any number can be expressed in form of A/1 (lets say --3/2 it can be written as 1.5/1)
so basically if you see option 1 is asking us A/1 < (A+B)/(2) < B/1

The average is always in btw A & B

II & III can simply be rejected by taking values 1,2,3,4.
Intern
Intern
avatar
B
Joined: 18 Apr 2018
Posts: 2
If m, p, s and v are positive, and m/p < s/v, which of the following  [#permalink]

Show Tags

New post 18 Apr 2018, 23:36
1
imhimanshu wrote:
If m, p, s and v are positive, and \(\frac{m}{p} <\frac{s}{v}\), which of the following must be between \(\frac{m}{p}\) and \(\frac{s}{v}\)

I. \(\frac{m+s}{p+v}\)

II. \(\frac{ms}{pv}\)

III. \(\frac{s}{v} - \frac{m}{p}\)


A. None
B. I only
C. II only
D. III only
E. I and II both



I. if \(\frac{m+s}{p+v}\) is to be more than \(\frac{m}{p}\),

==> \(\frac{m}{p}\)<\(\frac{m+s}{p+v}\)
==> pm+mv<pm+ps and since all numbers are positive,
==> \(\frac{m}{p}\)<\(\frac{s}{v}\) which is true as per question stem.

if \(\frac{m+s}{p+v}\) is to be less than \(\frac{s}{v}\),
==> \(\frac{s}{v}\)>\(\frac{m+s}{p+v}\)
==> sp+sv>mv+sv
==> \(\frac{m}{p}\)<\(\frac{s}{v}\) which is true as per question stem.

II. if \(\frac{ms}{pv}\) is to be more than \(\frac{m}{p}\),

==> \(\frac{s}{v}\) must be greater than 1, which is not conclusive as per stem of question.

III. if \(\frac{s}{v} - \frac{m}{p}\) is to be more than \(\frac{m}{p}\),

==> \(\frac{s}{v} must be greater than 2 X [m]\frac{m}{p}\), which is not conclusive as per stem of question.

So only (I) can be derived with 100% confidence.
Hence Answer must be B.
Intern
Intern
avatar
B
Joined: 22 Jan 2018
Posts: 21
Re: If m, p, s and v are positive, and m/p < s/v, which of the following  [#permalink]

Show Tags

New post 11 May 2018, 11:36
Bunuel wrote:
siriusblack1106 wrote:
which of the following 'must be' between m/p and s/v?

I didn't understand the question. What does the question mean here by 'must be'?


"Must be" means for any (possible) values of m, p, s and v. So, \(\frac{m}{p}< (option) <\frac{s}{v}\), must hold true fo any positive values of m, p, s and v.

Must or Could be True Questions to practice: http://gmatclub.com/forum/search.php?se ... tag_id=193

Hope it helps.


Do you have a more elegant solution to this problem Bunuel? Most of the answers here are either choosing numbers or doing complicated calculations that I would find difficult to try during the test.
Intern
Intern
avatar
B
Joined: 07 May 2015
Posts: 37
Re: If m, p, s and v are positive, and m/p < s/v, which of the following  [#permalink]

Show Tags

New post 13 May 2018, 15:44
DarkBlizzard wrote:
imhimanshu wrote:
If m, p, s and v are positive, and \(\frac{m}{p} <\frac{s}{v}\), which of the following must be between \(\frac{m}{p}\) and \(\frac{s}{v}\)

I. \(\frac{m+s}{p+v}\)
II. \(\frac{ms}{pv}\)
III. \(\frac{s}{v} - \frac{m}{p}\)

A. None
B. I only
C. II only
D. III only
E. I and II both


This question is quite easy:
III. is clearly out, because this will be smaller than m/p.
II. is clearly out. Test this with m/p=0 or s/v=1
I. Struggled a minute here, but then I got this idea:

If we pick a number for m/p and a number for s/v: For example: m/p = 1/3 and s/v = 3/4

Now, I we try to get these numbers to the same denominator we get:
4/12 < 9/12
If these numbers are added ab (4+9)/(12+12), we always get a number that is higher than m/p but lower than s/v. This is how I solved this :)

This works for every number pair. We add the same denominator, but an enumerator which is bigger than the original one. Therefore this has to be bigger than m/p but smaller than s/v! :wink:


is III clearly out? 1 < 100, but 100-1 is in between the 2. am i misreading something?

I picked 1/8 < 2/3 to plug in, and III does work here. with 1/2 < 3/4 however it does not.
Senior Manager
Senior Manager
avatar
P
Joined: 31 Jul 2017
Posts: 495
Location: Malaysia
Schools: INSEAD Jan '19
GMAT 1: 700 Q50 V33
GPA: 3.95
WE: Consulting (Energy and Utilities)
Re: If m, p, s and v are positive, and m/p < s/v, which of the following  [#permalink]

Show Tags

New post 14 May 2018, 04:57
imhimanshu wrote:
If m, p, s and v are positive, and \(\frac{m}{p} <\frac{s}{v}\), which of the following must be between \(\frac{m}{p}\) and \(\frac{s}{v}\)

I. \(\frac{m+s}{p+v}\)

II. \(\frac{ms}{pv}\)

III. \(\frac{s}{v} - \frac{m}{p}\)


A. None
B. I only
C. II only
D. III only
E. I and II both


As the question asks for Must, we can take test with only one set of value -

s = 5, m = 4, p,v = 1

Only Statement II Satisfies. Hence, Option B.
_________________

If my Post helps you in Gaining Knowledge, Help me with KUDOS.. !!

Intern
Intern
avatar
B
Joined: 07 May 2015
Posts: 37
If m, p, s and v are positive, and m/p < s/v, which of the following  [#permalink]

Show Tags

New post 14 May 2018, 06:16
rahul16singh28 wrote:
imhimanshu wrote:
If m, p, s and v are positive, and \(\frac{m}{p} <\frac{s}{v}\), which of the following must be between \(\frac{m}{p}\) and \(\frac{s}{v}\)

I. \(\frac{m+s}{p+v}\)

II. \(\frac{ms}{pv}\)

III. \(\frac{s}{v} - \frac{m}{p}\)


A. None
B. I only
C. II only
D. III only
E. I and II both


As the question asks for Must, we can take test with only one set of value -

s = 5, m = 4, p,v = 1

Only Statement II Satisfies. Hence, Option B.


Yeah I understand. I guess what I'm saying is that picking the right numbers is essential on this one, as if the wrong numbers are picked, III works too. Just realized that there isn't a I and III option though, so it were down to I and III one could pick new numbers
Manager
Manager
avatar
S
Joined: 29 Sep 2017
Posts: 113
Location: United States
Concentration: Strategy, Leadership
GMAT 1: 720 Q49 V39
GPA: 3.3
WE: Consulting (Consulting)
GMAT ToolKit User Reviews Badge
Re: If m, p, s and v are positive, and m/p < s/v, which of the following  [#permalink]

Show Tags

New post 15 May 2018, 11:17
bp2013 wrote:
rahul16singh28 wrote:
imhimanshu wrote:
If m, p, s and v are positive, and \(\frac{m}{p} <\frac{s}{v}\), which of the following must be between \(\frac{m}{p}\) and \(\frac{s}{v}\)

I. \(\frac{m+s}{p+v}\)

II. \(\frac{ms}{pv}\)

III. \(\frac{s}{v} - \frac{m}{p}\)


A. None
B. I only
C. II only
D. III only
E. I and II both


As the question asks for Must, we can take test with only one set of value -

s = 5, m = 4, p,v = 1

Only Statement II Satisfies. Hence, Option B.


Yeah I understand. I guess what I'm saying is that picking the right numbers is essential on this one, as if the wrong numbers are picked, III works too. Just realized that there isn't a I and III option though, so it were down to I and III one could pick new numbers


Which is why when picking numbers, it's always best to choose at least 2 set. I picked: 1, 2, 3, 9 for easy math and they made B true and everything else false. If you have time, best to verify with a second set of numbers or algebraically.
_________________

If this helped, please give kudos!

Intern
Intern
User avatar
B
Joined: 05 Jul 2017
Posts: 15
CAT Tests
If m, p, s and v are positive, and m/p < s/v, which of the following  [#permalink]

Show Tags

New post 28 Sep 2018, 21:09
DarkBlizzard wrote:
imhimanshu wrote:
If m, p, s and v are positive, and \(\frac{m}{p} <\frac{s}{v}\), which of the following must be between \(\frac{m}{p}\) and \(\frac{s}{v}\)

I. \(\frac{m+s}{p+v}\)
II. \(\frac{ms}{pv}\)
III. \(\frac{s}{v} - \frac{m}{p}\)

A. None
B. I only
C. II only
D. III only
E. I and II both


This question is quite easy:
III. is clearly out, because this will be smaller than m/p.
II. is clearly out. Test this with m/p=0 or s/v=1
I. Struggled a minute here, but then I got this idea:

If we pick a number for m/p and a number for s/v: For example: m/p = 1/3 and s/v = 3/4

Now, I we try to get these numbers to the same denominator we get:
4/12 < 9/12
If these numbers are added ab (4+9)/(12+12), we always get a number that is higher than m/p but lower than s/v. This is how I solved this :)

This works for every number pair. We add the same denominator, but an enumerator which is bigger than the original one. Therefore this has to be bigger than m/p but smaller than s/v! :wink:


How is the third part getting satisfied. 9/12- 4/12= 5/12 this falls between m/p and s/v
This third part is giving me quite a headache, it's getting satisfied for some pairs and some not. I guess, like karishma said, we should avoid plugging in numbers and proceed with logic.
_________________

Optimism, pessimism, screw that! We'd make it happen.

This one dream that I breath every single moment, would be a reality soon.

Intern
Intern
User avatar
B
Joined: 06 May 2015
Posts: 47
Location: India
Schools: Darden '21
GPA: 4
Re: If m, p, s and v are positive, and m/p < s/v, which of the following  [#permalink]

Show Tags

New post 28 Sep 2018, 22:10
mau5 wrote:
imhimanshu wrote:
If m, p, s and v are positive, and \(\frac{m}{p} <\frac{s}{v}\), which of the following must be between \(\frac{m}{p}\) and \(\frac{s}{v}\)

I. \(\frac{m+s}{p+v}\)
II. \(\frac{ms}{pv}\)
III. \(\frac{s}{v} - \frac{m}{p}\)

A. None
B. I only
C. II only
D. III only
E. I and II both


Given that \(\frac{m}{p}<\frac{s}{v} \to \frac{m}{s}<\frac{p}{v}\)Adding 1 on both sides we have \(\frac{m+s}{s}<\frac{p+v}{v} \to \frac{m+s}{p+v}<\frac{s}{v}\)

Again,\(\frac{m}{p}<\frac{s}{v} \to \frac{v}{p}<\frac{s}{m}\) Adding 1 on both sides, we have \(\frac{v+p}{p}<\frac{s+m}{m} \to \frac{m}{p}<\frac{s+m}{v+p}\) . Thus, I is always true. We just have to check for Option II now.

Assming it to be true, we should have\(\frac{ms}{pv}<\frac{s}{v} \to \frac{m}{p}<1\) Which is not always true. Thus the answer is B.


Thank you. Very clear explanation for (I) :thumbup: :)
Manager
Manager
avatar
S
Joined: 24 Sep 2018
Posts: 137
CAT Tests
Re: If m, p, s and v are positive, and m/p < s/v, which of the following  [#permalink]

Show Tags

New post 17 Oct 2018, 11:53
Amanrohra wrote:
Nowhere it says m,p,s and v can't be same numbers. Therefore I plugged in numbers to disprove the statements.
Shall they not mention that the numbers are distict.

Dear Amanrohra,

I'm happy to respond here,
the question doesn't explicitly mentions that m,p,s and v are distinct, but the question gives us a condition:
\(\frac{m}{p}< \frac{s}{v}\)
which can not be true with map,s and v being the same numbers.
Hence they need to be distinct, at least in a manner to fulfil the condition.
for e.g. \(\frac{2}{5} < \frac{5}{2}\)
I hope this helps.
_________________

Please award :thumbup: kudos, If this post helped you in someway. :student_man:

GMAT Club Bot
Re: If m, p, s and v are positive, and m/p < s/v, which of the following &nbs [#permalink] 17 Oct 2018, 11:53

Go to page   Previous    1   2   [ 33 posts ] 

Display posts from previous: Sort by

If m, p, s and v are positive, and m/p < s/v, which of the following

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.