corvinis
If |x| > 3, which of the following must be true?
I. x > 3
II. X^2 > 9
III. |x-1|>2
A. I only
B. II only
C. I and II only
D. II and III only
E. I, II, and III
I can't understand how the official answer can be right. For me is B. Please respond and I'll provide official explanation! Thanks
Responding to a pm:
|x| > 3 implies that x is a point whose distance from 0 is more than 3. So x could be greater than 3 or less than -3. Before you move further, think about the values x can take: 3.00001, 3.5, 4.2, 5.7, 67, 1000, -3.45, -4, -8, -100 etc. The only values it cannot take are -3 <= x <= 3
Which of the following must be true?
I. x > 3
For every value that x can take, must x be greater than 3? No. e.g. if x takes -3.45, -4 etc, it will not be greater than 3 so this is not true.
II. X^2 > 9
This is the same as |x| > 3 so it must be true
III. |x-1|>2
This implies that the distance of x from 1 must be greater than 2. So x is either greater than 3 or less than -1. Now, recall all the values that x can take. For each value, can be say that x is either greater than 3 or less than -1? Yes.
3.00001 - x is greater than 3
3.5 : x is greater than 3
4.2 : x is greater than 3
5.7 : x is greater than 3
67 : x is greater than 3
1000 : x is greater than 3
-3.45 : x is less than -1
-4 : x is less than -1
-8 : x is less than -1
-100 : x is less than -1
For every value that x can take, x will be either greater than 3 or less than -1. Note that we are not saying that every value less than -1 must be valid for x. We are saying that every value that is valid for x (found by using |x| > 3) will be either greater than 3 or less than -1. Hence |x-1|>2 must be true for every value that x can take.
very beautiful explanation ....I must say ..
anyway ...I quote you " Note that we are not saying that every value less than -1 must be valid for x. We are saying that every value that is valid for x (found by using |x| > 3) will be either greater than 3 or less than -1. Hence |x-1|>2 must be true for every value that x can take."
III. |x-1|>2
So, according to the question stem, if we suppose x = -4, and according to the option #3, if you suppose x = -2, then these two values may not match, but the range provided by the option # 3, that is "-1>x>3" will cover the range provided by the question stem that is "-3>x>3", because -4 is certainly less than -1 and so is x...
please correct me if I am missing something you meant...
thanks in advance .....