Check GMAT Club Decision Tracker for the Latest School Decision Releases https://gmatclub.com/AppTrack

 It is currently 28 May 2017, 02:57

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# If (x/y)>2, is 3x+2y<18? (1) x-y is less than 2 (2)

Author Message
TAGS:

### Hide Tags

Retired Moderator
Status: The last round
Joined: 18 Jun 2009
Posts: 1300
Concentration: Strategy, General Management
GMAT 1: 680 Q48 V34
Followers: 81

Kudos [?]: 1077 [6] , given: 157

If (x/y)>2, is 3x+2y<18? (1) x-y is less than 2 (2) [#permalink]

### Show Tags

15 Jan 2010, 09:32
6
KUDOS
24
This post was
BOOKMARKED
00:00

Difficulty:

95% (hard)

Question Stats:

34% (03:28) correct 66% (03:03) wrong based on 269 sessions

### HideShow timer Statistics

If (x/y)>2, is 3x+2y<18?

(1) x-y is less than 2
(2) y-x is less than 2
[Reveal] Spoiler: OA

_________________
Math Expert
Joined: 02 Sep 2009
Posts: 38935
Followers: 7746

Kudos [?]: 106394 [14] , given: 11626

### Show Tags

15 Jan 2010, 14:02
14
KUDOS
Expert's post
6
This post was
BOOKMARKED
Hussain15 wrote:
If (x/y)>2, is 3x+2y<18?

(1) x-y is less than 2
(2) y-x is less than 2

It will be great to see how do you guys approach this lethal one.

I would solve this question with graphic approach, by drawing the lines. With this approach you will "see" that the answer is A. But we can do it with algebra as well.

$$\frac{x}{y}>2$$ tells us that $$x$$ and $$y$$ are either both positive or both negative, which means that all points $$(x,y)$$ satisfying given inequality are either in I or III quadrant. When they are both negative (in III quadrant) inequality $$3x+2y<18$$ is always true, so we should check only for I quadrant, or when both $$x$$ and $$y$$ are positive.

In I quadrant, as $$x$$ and $$y$$ are both positive, we can rewrite $$\frac{x}{y}>2$$ as $$x>2y>0$$ (remember $$x>0$$ and $$y>0$$).

So basically question becomes: If $$x>0$$ and $$y>0$$ and $$x>2y>0$$, is $$3x+2y<18$$?

(1) $$x-y<2$$.

Subtract inequalities $$x>2y$$ and $$x-y<2$$ (we can do this as signs are in opposite direction) --> $$x-(x-y)>2y-2$$ --> $$y<2$$.

Now add inequalities $$x-y<2$$ and $$y<2$$ (we can do this as signs are in the same direction) --> $$x-y+y<2+2$$ --> $$x<4$$.

We got $$y<2$$ and $$x<4$$. If we take maximum values $$x=4$$ and $$y=2$$ and substitute in $$3x+2y<18$$, we'll get $$12+4=16<18$$.

Sufficient.

(2) $$y-x<2$$ and $$x>2y$$:
$$x=3$$ and $$y=1$$ --> $$3x+2y=11<18$$ true.
$$x=11$$ and $$y=5$$ --> $$3x+2y=43<18$$ false.

Not sufficient.

_________________
Math Expert
Joined: 02 Sep 2009
Posts: 38935
Followers: 7746

Kudos [?]: 106394 [4] , given: 11626

### Show Tags

21 May 2010, 09:28
4
KUDOS
Expert's post
2
This post was
BOOKMARKED
sandeepuc wrote:
I spent 5 min for this question with incorrect ans .. There was no way I could have solved this question .. Very nice explanation Brunel ..

But I failed to understand the theory of addition and substraction for equalities with same sign and opposite signs respective .. Can you pls throw some light ..

You can only add inequalities when their signs are in the same direction:

If $$a>b$$ and $$c>d$$ (signs in same direction: $$>$$ and $$>$$) --> $$a+c>b+d$$.
Example: $$3<4$$ and $$2<5$$ --> $$3+2<4+5$$.

You can only apply subtraction when their signs are in the opposite directions:

If $$a>b$$ and $$c<d$$ (signs in opposite direction: $$>$$ and $$<$$) --> $$a-c>b-d$$ (take the sign of the inequality you subtract from).
Example: $$3<4$$ and $$5>1$$ --> $$3-5<4-1$$.

Hope it helps.
_________________
Math Expert
Joined: 02 Sep 2009
Posts: 38935
Followers: 7746

Kudos [?]: 106394 [2] , given: 11626

### Show Tags

17 Jan 2010, 01:55
2
KUDOS
Expert's post
Hussain15 wrote:
OA is "A". Thanks for detailed answer.

You have plugged the numbers in option 2, can it be done algeberically??

For (2) we have:
y-2<x and
0<2y<x.

We'll be able to find the pair of (x,y) when 3x+2y<18 holds true and also when 3x+2y<18 doesn't hold true. As the lower limits for (x,y) is zero (x and y can take very small values ensuring 3x+2y<18 to hold true) and there is no upper limit for this pair (x and y can take huge values ensuring 3x+2y<18 not to hold true).

This question is quite hard and I really think that the best way to solve it is by drawing the lines OR by number plugging.
_________________
Math Expert
Joined: 02 Sep 2009
Posts: 38935
Followers: 7746

Kudos [?]: 106394 [2] , given: 11626

### Show Tags

01 Jun 2010, 15:47
2
KUDOS
Expert's post
alphastrike wrote:

+1 already for a great explanation.

Follow-up question: Would you mind detailing a graphical approach to this problem? I haven't taken a math course in 7 years so am a little rusty. Knowing how to solve such problems with a graph seems like it would be very useful.

Great post by Walker about the graphic approach: graphic-approach-to-problems-with-inequalities-68037.html

Interestingly he uses this same question for explanation.
_________________
Intern
Joined: 11 Oct 2009
Posts: 26
Followers: 0

Kudos [?]: 3 [1] , given: 6

### Show Tags

21 May 2010, 09:10
1
KUDOS
I spent 5 min for this question with incorrect ans .. There was no way I could have solved this question .. Very nice explanation Brunel ..

But I failed to understand the theory of addition and substraction for equalities with same sign and opposite signs respective .. Can you pls throw some light ..
Verbal Forum Moderator
Joined: 02 Aug 2009
Posts: 4514
Followers: 394

Kudos [?]: 4203 [1] , given: 109

Re: If (x/y)>2, is 3x+2y<18? (1) x-y is less than 2 (2) [#permalink]

### Show Tags

30 Jun 2015, 09:07
1
KUDOS
Expert's post
Mo2men wrote:

Hi Bunuel,

In statement 1, you got y<2 and x<4 but when x=2 & y=1 or even your point x=4 & y=2 so x/y>2 is not satisfied because 2/1 or 4/2 is not bigger 2. How come still statement 1 sufficient?

Thanks

Since you have asked here only the above doubt...
y<2 and x<4.... you cannot take them as y=2 and x=4 as it is given both are less than these quantities...
so if y=1.9 .. statement 1 says x-y<2 or x-1.9<2 or x<3.9, so it satisfies x<4..
however if we take the values of x and y slightly more than the max possible(x<4).. x=4and (x<2)..y=2, we find value of eq <18.. so suff
_________________

Absolute modulus :http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html

Senior Manager
Joined: 21 Jul 2009
Posts: 364
Schools: LBS, INSEAD, IMD, ISB - Anything with just 1 yr program.
Followers: 18

Kudos [?]: 175 [0], given: 22

### Show Tags

15 Jan 2010, 13:47
Hussain15 wrote:
If (x/y)>2, is 3x+2y<18?

(1) x-y is less than 2
(2) y-x is less than 2

It will be great to see how do you guys approach this lethal one.

Given x > 2y. Have to substantiate if 3x + 2y < 18.

Stmt-1: x < 2 + y.
Keep substituting different values for y, we get ranges for x based on the stimulus condition and this statement, substitute these different values and we notice that certain values are applicable while many others aren't applicable to substantiate the posed question. Therefore, NS.

Stmt-2: can be rephrased as x > y - 2.
Do the same method as above, same situation, no definitive answer. Therefore, NS.

combining both the statements, still substituting all possible values for y and deriving ranges for x, we can't really substantiate the given equation.

My answer is E. I wonder if there is a simpler way of solving problems of this kind. I used the brute force approach of substituting valid numbers for y and ended up getting wierder ranges for x and again, choose something which accidentally would substantiate the equation and mostly certain other numbers that do not. Took me more than a 10 mins handling work simultaneously, and if such questions appear on the real deal, I might as well give up on GMAT and pursue a PhD in Pure Math.
_________________

I am AWESOME and it's gonna be LEGENDARY!!!

Retired Moderator
Status: The last round
Joined: 18 Jun 2009
Posts: 1300
Concentration: Strategy, General Management
GMAT 1: 680 Q48 V34
Followers: 81

Kudos [?]: 1077 [0], given: 157

### Show Tags

15 Jan 2010, 22:35
Bunuel wrote:
Hussain15 wrote:
If (x/y)>2, is 3x+2y<18?

(1) x-y is less than 2
(2) y-x is less than 2

It will be great to see how do you guys approach this lethal one.

I would solve this question with graphic approach, by drawing the lines. With this approach you will "see" that the answer is A. But we can do it with algebra as well.

x/y>2 tells us that x and y are either both positive or both negative, which means that all points (x,y) satisfying given inequality are in I or III quadrants. When they are both negative (in III quadrant) inequality 3x+2y<18 is always true, so we should check only for I quadrant.

In I quadrant x and y are both positive and we can rewrite x/y>2 as x>2y>0 (remember x>0 and y>0).

(1) x-y<2.

Subtract inequalities x>2y and x-y<2 (we can do this as signs are in opposite direction) --> x-(x-y)>2y-2 --> y<2.

Now add inequalities x-y<2 and y<2 (we can do this as signs are in the same direction) --> x-y+y<2+2 --> x<4.

We got y<2 and x<4. If we take maximum values x=4 and y=2 and substitute in 3x+2y<18, we'll get 12+4=12<18.

Sufficient.

(2) y-x<2 and x>2y:
x=3 and y=1 --> 3x+2y=11<18 true.
x=11 and y=5 --> 3x+2y=43<18 false.
Not sufficient.

OA is "A". Thanks for detailed answer.

You have plugged the numbers in option 2, can it be done algeberically??
_________________
CEO
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2786
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Followers: 238

Kudos [?]: 1729 [0], given: 235

### Show Tags

08 May 2010, 11:50
neoreaves wrote:
If x/y >2, is 3x+2y<18?

1. x-y is less than 2
2. y-x is less than 2

Nice explanation bunnel... thanks
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned

Jo Bole So Nihaal , Sat Shri Akaal

GMAT Club Premium Membership - big benefits and savings

Gmat test review :
http://gmatclub.com/forum/670-to-710-a-long-journey-without-destination-still-happy-141642.html

Manager
Joined: 04 Feb 2009
Posts: 238
Location: Ukraine
Schools: Ross 2013
WE 1: Pharmaceutical industry 5 years, C level
Followers: 4

Kudos [?]: 23 [0], given: 20

### Show Tags

28 May 2010, 06:07
great explanation Bunuel
Intern
Joined: 01 Jun 2010
Posts: 23
Location: United States
Schools: Harvard Business School (HBS) - Class of 2014
GMAT 1: 730 Q47 V44
GPA: 3.53
Followers: 0

Kudos [?]: 16 [0], given: 9

### Show Tags

01 Jun 2010, 15:26
Bunuel wrote:
Hussain15 wrote:
If (x/y)>2, is 3x+2y<18?

(1) x-y is less than 2
(2) y-x is less than 2

It will be great to see how do you guys approach this lethal one.

I would solve this question with graphic approach, by drawing the lines. With this approach you will "see" that the answer is A. But we can do it with algebra as well.

$$\frac{x}{y}>2$$ tells us that $$x$$ and $$y$$ are either both positive or both negative, which means that all points $$(x,y)$$ satisfying given inequality are either in I or III quadrant. When they are both negative (in III quadrant) inequality $$3x+2y<18$$ is always true, so we should check only for I quadrant, or when both $$x$$ and $$y$$ are positive.

In I quadrant, as $$x$$ and $$y$$ are both positive, we can rewrite $$\frac{x}{y}>2$$ as $$x>2y>0$$ (remember $$x>0$$ and $$y>0$$).

So basically question becomes: If $$x>0$$ and $$y>0$$ and $$x>2y>0$$, is $$3x+2y<18$$?

(1) $$x-y<2$$.

Subtract inequalities $$x>2y$$ and $$x-y<2$$ (we can do this as signs are in opposite direction) --> $$x-(x-y)>2y-2$$ --> $$y<2$$.

Now add inequalities $$x-y<2$$ and $$y<2$$ (we can do this as signs are in the same direction) --> $$x-y+y<2+2$$ --> $$x<4$$.

We got $$y<2$$ and $$x<4$$. If we take maximum values $$x=4$$ and $$y=2$$ and substitute in $$3x+2y<18$$, we'll get $$12+4=16<18$$.

Sufficient.

(2) $$y-x<2$$ and $$x>2y$$:
$$x=3$$ and $$y=1$$ --> $$3x+2y=11<18$$ true.
$$x=11$$ and $$y=5$$ --> $$3x+2y=43<18$$ false.

Not sufficient.

+1 already for a great explanation.

Follow-up question: Would you mind detailing a graphical approach to this problem? I haven't taken a math course in 7 years so am a little rusty. Knowing how to solve such problems with a graph seems like it would be very useful.
_________________

HBS Class of 2014

Manager
Joined: 07 Oct 2006
Posts: 71
Location: India
Followers: 2

Kudos [?]: 9 [0], given: 3

### Show Tags

09 Jun 2010, 11:30
Excellent explanations by Brunel (algebra) and Walker (graph).. Kudos to both of you...
_________________

-------------------------------------

For English Grammar tips, consider visiting http://www.grammar-quizzes.com/index.html.

Intern
Joined: 09 Dec 2009
Posts: 33
Followers: 0

Kudos [?]: 17 [0], given: 7

### Show Tags

26 Jun 2010, 02:16
Hi Bunuel,
Thanks for the wonderful explanation.
But in the actual exam when you have the clock ticking, how do we decide whether to try plugging in numbers or try solving it using algebra.I am not sure if there is any definite strategy for this but any inputs from your experience will help.
Intern
Joined: 14 Jun 2010
Posts: 16
Location: Singapore
Concentration: Strategy
Schools: Fuqua '14 (S)
WE: Information Technology (Consulting)
Followers: 0

Kudos [?]: 5 [0], given: 2

### Show Tags

28 Jun 2010, 00:19
Given x/y > 2.
i. x-y < 2: for this to be possible x and y have to be negative. Now since x and y are both negative, the equation in question will always result in a negative number. Hence, SUFFICIENT.

ii. y-x <2: For this to be possible x and y have to be positive. Now since x and y both are positive and x-y>-2, multiple solutions exist. Hence, NOT SUFFICIENT.

Math Expert
Joined: 02 Sep 2009
Posts: 38935
Followers: 7746

Kudos [?]: 106394 [0], given: 11626

### Show Tags

28 Jun 2010, 05:54
sunnyarora wrote:
Given x/y > 2.
i. x-y < 2: for this to be possible x and y have to be negative. Now since x and y are both negative, the equation in question will always result in a negative number. Hence, SUFFICIENT.

ii. y-x <2: For this to be possible x and y have to be positive. Now since x and y both are positive and x-y>-2, multiple solutions exist. Hence, NOT SUFFICIENT.

OA for this question is A, but your reasoning is not correct:

For (1) $$x=2>0$$ and $$y=0.5>0$$ satisfy both $$\frac{x}{y}>2$$ and $$x-y<2$$, so x and y can be positive as well.

For (2) $$x=-2<0$$ and $$y=-0.5>0$$ satisfy both $$\frac{x}{y}>2$$ and $$y-x<2$$, so x and y can be negative as well.

Solution for this problem is in earlier posts.
_________________
Intern
Joined: 04 Jun 2010
Posts: 3
Followers: 0

Kudos [?]: 0 [0], given: 0

### Show Tags

28 Jun 2010, 08:08
we can solve just drawing th elines in geometric terms ,...
for condition 1...draw lines of x>2y and x-y<2 and check the area whether it is lying below the line 3x+2y<18

same can be done for second condition

Bunuel wrote:
sunnyarora wrote:
Given x/y > 2.
i. x-y < 2: for this to be possible x and y have to be negative. Now since x and y are both negative, the equation in question will always result in a negative number. Hence, SUFFICIENT.

ii. y-x <2: For this to be possible x and y have to be positive. Now since x and y both are positive and x-y>-2, multiple solutions exist. Hence, NOT SUFFICIENT.

OA for this question is A, but your reasoning is not correct:

For (1) $$x=2>0$$ and $$y=0.5>0$$ satisfy both $$\frac{x}{y}>2$$ and $$x-y<2$$, so x and y can be positive as well.

For (2) $$x=-2<0$$ and $$y=-0.5>0$$ satisfy both $$\frac{x}{y}>2$$ and $$y-x<2$$, so x and y can be negative as well.

Solution for this problem is in earlier posts.
Manager
Joined: 03 Aug 2011
Posts: 239
Location: United States
Concentration: General Management, Entrepreneurship
GMAT 1: 750 Q49 V44
GPA: 3.38
WE: Engineering (Computer Software)
Followers: 1

Kudos [?]: 44 [0], given: 12

Re: If (x/y)>2, is 3x+2y<18? (1) x-y is less than 2 (2) [#permalink]

### Show Tags

06 Apr 2012, 15:47
i followed the exact same procedure except at the very end. i tend to have problems switching back/forth between doing algebra, then stepping back and using logic, or stepping back and plugging numbers. in fact, I think a lot of the mistakes I make when I take the exam is trying to switch between techniques.

my problem stem
3x+2y<18 ==> is x < 18/3 -2y/3 ==> is x < 6 - 2y/3?

for (1). negative values of x/y are already sufficient, so these are for positive x and positive y

- first i try to isolate x because i took the problem stem and isolated x

x/y > 2 ==> x > 2*y

x -y < 2 ==> x < 2 + y

therefore

2* y < x < 2 + y

in order for the bolded problem stem to be true then the below must be true. x < 2+ y but is x < 6 - 2y/3?

2 + y <= 6 - 2y/3

y + 2y/3 <= 4
5y/3 <= 4
y <= 12/5
y <= 2 and 2/5
if the above is true then we know we are OK

then take that inequality with x in the middle and relate the y part only

2*y < 2+y
therefore
y < 2

so y < 2 shows that it is certainly <= 2 and 2/5
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 15494
Followers: 651

Kudos [?]: 210 [0], given: 0

Re: If (x/y)>2, is 3x+2y<18? (1) x-y is less than 2 (2) [#permalink]

### Show Tags

23 Oct 2013, 22:09
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Intern
Joined: 04 Jul 2013
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 1

Re: If (x/y)>2, is 3x+2y<18? (1) x-y is less than 2 (2) [#permalink]

### Show Tags

19 Jun 2014, 10:19
Hi Bunuel,

Thank you for the great solution.
With regards to using graphs to solving the problem, do we get a grid kind of pad to be able to plot accurately and with ease?
Re: If (x/y)>2, is 3x+2y<18? (1) x-y is less than 2 (2)   [#permalink] 19 Jun 2014, 10:19

Go to page    1   2    Next  [ 28 posts ]

Similar topics Replies Last post
Similar
Topics:
1 Is xy < 18 ? (1) x + y < 6 (2) x > 0 and y > 0 3 05 Mar 2017, 08:35
Is xy > 0 ? (1) x – y > 2 (2) x + y > –2 3 27 Feb 2017, 10:52
4 If a / b > 2, is 3a + 2b < 18? 6 01 Aug 2016, 02:00
1 What is the value of x + y? 4x2−4y22(x+y) = 2x - 2y 3x + 2y = 24 6 31 Jul 2016, 21:29
3 Is x less than y? (1) x-y+1<0 (2) x-y-1<0 10 15 Jul 2016, 02:18
Display posts from previous: Sort by