GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 15 Nov 2018, 05:18

ISB R1 results on Nov 15:

Join Chat Room for Live Updates


Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in November
PrevNext
SuMoTuWeThFrSa
28293031123
45678910
11121314151617
18192021222324
2526272829301
Open Detailed Calendar
  • Free GMAT Strategy Webinar

     November 17, 2018

     November 17, 2018

     07:00 AM PST

     09:00 AM PST

    Nov. 17, 7 AM PST. Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT.
  • GMATbuster's Weekly GMAT Quant Quiz # 9

     November 17, 2018

     November 17, 2018

     09:00 AM PST

     11:00 AM PST

    Join the Quiz Saturday November 17th, 9 AM PST. The Quiz will last approximately 2 hours. Make sure you are on time or you will be at a disadvantage.

In a given river, the current is 6 mph. A certain riverboat can travel

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Moderator
avatar
V
Joined: 21 Jun 2014
Posts: 1051
Location: India
Concentration: General Management, Technology
GMAT 1: 540 Q45 V20
GPA: 2.49
WE: Information Technology (Computer Software)
GMAT ToolKit User Premium Member
In a given river, the current is 6 mph. A certain riverboat can travel  [#permalink]

Show Tags

New post 23 Sep 2017, 03:55
10
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

62% (01:40) correct 38% (01:42) wrong based on 141 sessions

HideShow timer Statistics

In a given river, the current is 6 mph. A certain riverboat can travel 18 mph in still water. How far upstream (against the current) can the boat travel if a round trip is to take 10 hours?

A) 24

B) 48

C) 60

D) 80

E) 96

_________________

---------------------------------------------------------------
Target - 720-740
Project PS Butler - https://gmatclub.com/forum/project-ps-butler-practice-everyday-280904.html
http://gmatclub.com/forum/information-on-new-gmat-esr-report-beta-221111.html
http://gmatclub.com/forum/list-of-one-year-full-time-mba-programs-222103.html

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50609
Re: In a given river, the current is 6 mph. A certain riverboat can travel  [#permalink]

Show Tags

New post 23 Sep 2017, 04:05
HKD1710 wrote:
In a given river, the current is 6 mph. A certain riverboat can travel 18 mph in still water. How far upstream (against the current) can the boat travel if a round trip is to take 10 hours?

A) 24

B) 48

C) 60

D) 80

E) 96


The upstream speed = the boat speed - the current speed = 18 - 6 = 12 mph;
The downstream speed = the boat speed + the current speed = 18 + 6 = 24 mph.

Since the downstream speed of the boat is twice that of the upstream speed, then travelling downstream would take the boat half the time it would take it to travel upstream: t/2 + t = 10 hours, which gives t = 20/3 hours.

In 20/3 hours, the boat will travel upstream (time)(rate) = 20/3*12 = 80 miles.

Answer: D.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

CEO
CEO
User avatar
D
Joined: 11 Sep 2015
Posts: 3116
Location: Canada
Re: In a given river, the current is 6 mph. A certain riverboat can travel  [#permalink]

Show Tags

New post 23 Sep 2017, 07:46
Top Contributor
HKD1710 wrote:
In a given river, the current is 6 mph. A certain riverboat can travel 18 mph in still water. How far upstream (against the current) can the boat travel if a round trip is to take 10 hours?

A) 24
B) 48
C) 60
D) 80
E) 96


Here's a different approach...

Let d = distance traveled upstream
So, d = distance traveled downstream

The upstream speed = the boat speed - the current speed = 18 - 6 = 12 mph
The downstream speed = the boat speed + the current speed = 18 + 6 = 24 mph.

Let's start with a "word equation"
(time spent traveling upstream) + (time spent traveling downstream) = 10 hours
time = distance/speed
We get: d/12 + d/24 = 10
Multiply both sides by 24 to get: 2d + d = 240
Simplify: 3d = 240
Solve: d = 80

Answer:

RELATED VIDEOS FROM OUR COURSE



_________________

Brent Hanneson – GMATPrepNow.com
Image

Senior SC Moderator
avatar
V
Joined: 22 May 2016
Posts: 2094
Premium Member CAT Tests
In a given river, the current is 6 mph. A certain riverboat can travel  [#permalink]

Show Tags

New post 23 Sep 2017, 10:19
HKD1710 wrote:
In a given river, the current is 6 mph. A certain riverboat can travel 18 mph in still water. How far upstream (against the current) can the boat travel if a round trip is to take 10 hours?

A) 24

B) 48

C) 60

D) 80

E) 96

Another approach: set distances equal. The boat covers the same distance on both legs of the trip.

D = r*t for each leg of the trip (r = speed)

Upstream speed: (still water speed) - (speed of current)

Downstream speed: (still water speed) + (speed of current)

Total time is 10 hours.
If one leg's time = t, other leg's = (10 - t)

Upstream leg
Speed (rate) = (18-6) = 12
Time = t
Distance = r*t = 12t

Downstream leg
Speed (rate) = (18+6) = 24
Time = (10 - t)
Distance = r*t = 24(10 - t)

D = D
12t = 24(10-t)
12t = 240 - 24t
Divide by 12:
t = 20 - 2t
3t = 20
t = \(\frac{20}{3}\)

How far upstream can the boat travel? rt = D

12 * \(\frac{20}{3}\) = 80

Answer D
Manager
Manager
avatar
G
Joined: 12 Feb 2017
Posts: 69
Re: In a given river, the current is 6 mph. A certain riverboat can travel  [#permalink]

Show Tags

New post 23 Sep 2017, 23:16
let x be the distance for a single trip; hence for a round trip, the distance would be 2x
speed of current= 6 mph
speed of boat= 18 mph

speed of boat in upstream= speed of boat - speed of current
speed of boat in upstream= 18-6= 12 mph

speed of boat in downstream= speed of boat +speed of current
speed of boat in downstream= 18+6= 24 mph

total time required= time required to travel upstream + time required to travel downstream
10= x/12 + x/24
10= 2x+x/24
10*24 = 3x
x= 80 miles.

Hence Answer is option D.

Kudos if it helps.
VP
VP
User avatar
P
Joined: 09 Mar 2016
Posts: 1064
In a given river, the current is 6 mph. A certain riverboat can travel  [#permalink]

Show Tags

New post 20 Oct 2018, 02:16
Bunuel wrote:
HKD1710 wrote:
In a given river, the current is 6 mph. A certain riverboat can travel 18 mph in still water. How far upstream (against the current) can the boat travel if a round trip is to take 10 hours?

A) 24

B) 48

C) 60

D) 80

E) 96


The upstream speed = the boat speed - the current speed = 18 - 6 = 12 mph;
The downstream speed = the boat speed + the current speed = 18 + 6 = 24 mph.


Since the downstream speed of the boat is twice that of the upstream speed, then travelling downstream would take the boat half the time it would take it to travel upstream: t/2 + t = 10 hours, which gives t = 20/3 hours.

In 20/3 hours, the boat will travel upstream (time)(rate) = 20/3*12 = 80 miles.

Answer: D.


bunuel is it relative speed concept ? :?
VP
VP
User avatar
P
Joined: 09 Mar 2016
Posts: 1064
In a given river, the current is 6 mph. A certain riverboat can travel  [#permalink]

Show Tags

New post 20 Oct 2018, 06:49
dave13 wrote:
Bunuel wrote:
HKD1710 wrote:
In a given river, the current is 6 mph. A certain riverboat can travel 18 mph in still water. How far upstream (against the current) can the boat travel if a round trip is to take 10 hours?

A) 24

B) 48

C) 60

D) 80

E) 96


The upstream speed = the boat speed - the current speed = 18 - 6 = 12 mph;
The downstream speed = the boat speed + the current speed = 18 + 6 = 24 mph.


Since the downstream speed of the boat is twice that of the upstream speed, then travelling downstream would take the boat half the time it would take it to travel upstream: t/2 + t = 10 hours, which gives t = 20/3 hours.

In 20/3 hours, the boat will travel upstream (time)(rate) = 20/3*12 = 80 miles.

Answer: D.


dave13 wrote:
bunuel is it relative speed concept ? :?



Hi dave13, bunuel is on South African safari vacation now :) , so i will respond on his behalf :) since i am trained in MATH :grin: OKAY so i did some online research AND YES ! this a a relative speed concept you must KNOW AND MORE IMPORTANTLY - REMEMBER IT ! :lol:


Relative speed is defined as the speed of a moving object with respect to another.

When two objects are moving in the same direction, relative speed is calculated as their difference.

EXAMPLE: The upstream speed = the boat speed - the current speed = 18 - 6 = 12 mph

When the two objects are moving in opposite directions, relative speed is computed by adding the two speeds.


EXAMPLE: The downstream speed = the boat speed + the current speed = 18 + 6 = 24 mph


for more information please refer to the link below In other words just click on it MAN!!! :lol:


https://www.toppr.com/guides/quantitati ... /upstream/
GMAT Club Bot
In a given river, the current is 6 mph. A certain riverboat can travel &nbs [#permalink] 20 Oct 2018, 06:49
Display posts from previous: Sort by

In a given river, the current is 6 mph. A certain riverboat can travel

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.