GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 19 Feb 2019, 13:07

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in February
PrevNext
SuMoTuWeThFrSa
272829303112
3456789
10111213141516
17181920212223
242526272812
Open Detailed Calendar
• ### Free GMAT Prep Hour

February 20, 2019

February 20, 2019

08:00 PM EST

09:00 PM EST

Strategies and techniques for approaching featured GMAT topics. Wednesday, February 20th at 8 PM EST
• ### Online GMAT boot camp for FREE

February 21, 2019

February 21, 2019

10:00 PM PST

11:00 PM PST

Kick off your 2019 GMAT prep with a free 7-day boot camp that includes free online lessons, webinars, and a full GMAT course access. Limited for the first 99 registrants! Feb. 21st until the 27th.

# It takes Tanya 50 minutes to drive to the country club. If the average

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 52971
It takes Tanya 50 minutes to drive to the country club. If the average  [#permalink]

### Show Tags

27 Jun 2016, 03:02
16
00:00

Difficulty:

75% (hard)

Question Stats:

66% (03:18) correct 34% (03:12) wrong based on 270 sessions

### HideShow timer Statistics

It takes Tanya 50 minutes to drive to the country club. If the average speed of the entire round trip to the club is 87.5% of the average speed on the way to the club, how many minutes approximately will it take Tanya to drive home from the country club?

A. 42 minutes.
B. 48 minutes.
C. 52 minutes.
D. 54 minutes.
E. 66 minutes.

_________________
Director
Joined: 20 Feb 2015
Posts: 795
Concentration: Strategy, General Management
Re: It takes Tanya 50 minutes to drive to the country club. If the average  [#permalink]

### Show Tags

27 Jun 2016, 03:31
Time taken = 50 minutes = 5/6 hours
ones side distance = d1
speed = s1
d1=d2
d1=s1*(5/6)
d2=s1*(7/8)*t
s1*5/6=s1*7/8*t
t= 5*8/6*7=40/42= 20/21 = 95% = ~57 minutes
Intern
Joined: 06 Apr 2015
Posts: 14
Location: India
Concentration: General Management, International Business
Re: It takes Tanya 50 minutes to drive to the country club. If the average  [#permalink]

### Show Tags

28 Jun 2016, 04:27
Dear Bunuel, Is it E? I am getting approx 64.2 =~ 66 minutes

Sent from my iPhone using GMAT Club Forum mobile app
Manager
Joined: 08 Oct 2015
Posts: 241
Re: It takes Tanya 50 minutes to drive to the country club. If the average  [#permalink]

### Show Tags

28 Jun 2016, 04:50
chetan2u

hi could u pls weigh in on this problem
Intern
Joined: 16 Jul 2014
Posts: 19
Location: United Arab Emirates
Re: It takes Tanya 50 minutes to drive to the country club. If the average  [#permalink]

### Show Tags

28 Jun 2016, 12:53
Why one method works and the other doesn't is my favourite type of question. It's a good test of your fundamentals.

CounterSniper and royrijit1 allow me to reconcile the disparity between your respective approaches. rahulkashyap this might help you understand as well.

Let us first review the fundamentals required to solve this question:

Theory: If the same distance is covered twice, but with different speeds then the average speed for the total trip = 2(S1*S2)/(S1+S2)

Speed = Distance / Time , As long as one of the factors ( speed , time or distance ) is constant you can equate the other 2.

i.e for the same distance S1/S2 = T2/T1

for the same speed D1/T1 = D2/T2

for the same time D1/S1 = D2/S2

Solution:
Tanya's speed while travelling to the country club = S1

Tanya's speed while travelling back from the country club = S2

Average speed for the entire trip = 2(S1*S2)/(S1+S2)

As per the question, Average speed = 7/8 * S1

2(S1*S2)/(S1+S2) = 7/8 * S1 --> 16 * S2 = 7 * S1 + 7 * S2 --> 9*S2 = 7*S1

Since the distance, D, is constant for each trip --> S1/S2 = T2/T1 = 9/7

T2 = 50 * 9/7 = 64.28 mins ----Same as ---> T2 = 5/6 * 9/7 = 1.071 hrs

Lets us now review the approach used by CounterSniper.

d1=s1*(5/6)
d2=s1*(7/8)*t
s1*5/6=s1*7/8*t -------> (here lies the problem)

if you solve the above you will get approx 57 mins.

Note the average speed = 7/8 S1 and not the speed for the return trip (S2). The above method makes it seem as if you are equating the distance for each trip, but incorrectly using 7/8S1 as the speed for the second trip.

If you want to use the average speed to solve the question, using the method mentioned above, then multiply the distance by 2 as the average speed is calculated for the same distance covered twice.

2 * s1*5/6 = s1*7/8*t

t = 1.904 hrs approx = 114.2 mins approx (This is the time for covering the distance twice. ie going to and coming from the country club)

Time taken to return from the country club = 114 - 50 = 64 mins

NOTICE: if you just multiply the incorrect answer of 57 mins by 2 you get 114 mins.

E is the correct answer.

- Light Yagami
_________________

KUDOS is great way to help those who have helped you.

THE KILL SET - 700 level Sets quetions

VP
Joined: 07 Dec 2014
Posts: 1156
Re: It takes Tanya 50 minutes to drive to the country club. If the average  [#permalink]

### Show Tags

28 Jun 2016, 14:21
1
let t=time to drive home
d=one way distance
2d/(50+t)=7/8*d/50
t=450/7=64.3 minutes
Intern
Joined: 10 Jul 2014
Posts: 13
Re: It takes Tanya 50 minutes to drive to the country club. If the average  [#permalink]

### Show Tags

28 Jun 2016, 17:23
2
let the speed at which he drives to club be s

then avg speed = (total distance)/(total time taken)

avg speed =0.875s

total distance = 2d (d being distance)

total time taken = 50 min + x ( x is the unknown to be found)

hence

0.875s= (2d)/(50 +x)

now we know that s=d/50

there fore

0.875(d/50)= (2d)/(50+x)

1.75/100= 2/50+x
1.75(50+x)=200
50+x=200/1.75
x=114.28-50== 64.28 min
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 8883
Location: Pune, India
Re: It takes Tanya 50 minutes to drive to the country club. If the average  [#permalink]

### Show Tags

28 Jun 2016, 22:15
Bunuel wrote:
It takes Tanya 50 minutes to drive to the country club. If the average speed of the entire round trip to the club is 87.5% of the average speed on the way to the club, how many minutes approximately will it take Tanya to drive home from the country club?

A. 42 minutes.
B. 48 minutes.
C. 52 minutes.
D. 54 minutes.
E. 66 minutes.

When distances traveled on two legs of a journey are the same,

Avg Speed = $$\frac{2ab}{(a + b)}$$

$$(\frac{7}{8})s = \frac{2*s *b}{(s + b)}$$
$$7(s + b) = 16b$$
$$b = (\frac{7}{9})s$$

So speed of going from club to home is (7/9)s
Time taken = 50*(9/7) = more than 63 mins

Method 2: I would approximate here using the concept of average speed when same distance is covered at different speeds:
Speed on one leg is s and average is (7/8)s. If speed on the other leg were (6/8)s, the average would be slightly less than (7/8)s. So speed on the other leg must be a bit more than (6/8)s = (3/4)s

So time taken on the second leg would be a bit less than 50*(4/3) = 66.66

(The option given is quite a bit off from the actual answer. That usually shouldn't be the case in an actual GMAT question.)
_________________

Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

Intern
Joined: 21 Feb 2016
Posts: 9
Location: United States (MA)
Re: It takes Tanya 50 minutes to drive to the country club. If the average  [#permalink]

### Show Tags

30 Jun 2016, 06:53
Let the distance be d, so the round-trip distance=2d
Again, let he took x minutes to get back.
So, his up speed= d/50 and average speed=2d/x+50, which is 87.5% (7/8) of the up speed.

So, 2d/x+50=d/50*7/8
x=64+2/7 mins
So, ans E
Director
Joined: 20 Feb 2015
Posts: 795
Concentration: Strategy, General Management
Re: It takes Tanya 50 minutes to drive to the country club. If the average  [#permalink]

### Show Tags

30 Jun 2016, 08:40
ok , I messed it up a bit as usual.
took 87.5% as the returning speed instead of the round trip.

average speed = 2ab/a+b (where a is the speed with which she drives to country club and b is while coming back)
as per the question.
2ab/a+b=(7/8)a
or,
a/b=9/7
now since , speed is inversely proportional to time
t1/t2=7/9 (where t1 = 50 min and t2= time taken at speed b )
or,
t2=50(9/7)= ~66 minutes
Senior Manager
Joined: 15 Sep 2011
Posts: 321
Location: United States
WE: Corporate Finance (Manufacturing)
It takes Tanya 50 minutes to drive to the country club. If the average  [#permalink]

### Show Tags

18 Jul 2016, 17:46
2
Top Contributor
Option E.

Since $$\frac{7}{8}$$ is the average speed, then the inverse of it is the average time, $$\frac{8}{7}$$. Calculate the average time by multiplying the given time: $$\frac{8}{7}*50 = ~57$$. Therefore, since the average time is 57, the second time must be greater than 57 minutes. The only option for that is E.

VeritasPrepKarishma, Thoughts?
Senior Manager
Joined: 03 Apr 2013
Posts: 275
Location: India
Concentration: Marketing, Finance
GMAT 1: 740 Q50 V41
GPA: 3
Re: It takes Tanya 50 minutes to drive to the country club. If the average  [#permalink]

### Show Tags

17 Nov 2016, 00:35
1
Bunuel wrote:
It takes Tanya 50 minutes to drive to the country club. If the average speed of the entire round trip to the club is 87.5% of the average speed on the way to the club, how many minutes approximately will it take Tanya to drive home from the country club?

A. 42 minutes.
B. 48 minutes.
C. 52 minutes.
D. 54 minutes.
E. 66 minutes.

Somewhat different approach
Here's my 2 cents...

The average sped of the entire journey is $$\frac{7}{8}$$th of the original speed. If the speed had not changed, then the total journey time would have been 100 minutes. But it did change to $$\frac{7}{8}$$th . Therefore, the total time for the journey will be
$$\frac{8}{7}$$th of 100. We know that the first leg took 50 minutes. so the second leg took?

$$\frac{800}{7} - 50$$

= 64.2 ~ 66 (E)

_________________

Spread some love..Like = +1 Kudos

Target Test Prep Representative
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2827
Re: It takes Tanya 50 minutes to drive to the country club. If the average  [#permalink]

### Show Tags

09 Apr 2018, 15:34
Bunuel wrote:
It takes Tanya 50 minutes to drive to the country club. If the average speed of the entire round trip to the club is 87.5% of the average speed on the way to the club, how many minutes approximately will it take Tanya to drive home from the country club?

A. 42 minutes.
B. 48 minutes.
C. 52 minutes.
D. 54 minutes.
E. 66 minutes.

We can let a = average speed of the round trip, b = average speed to the club, c = average speed back home and d = the one-way distance. We need to determine d/c.

We are given that d/b = 5/6 (recall that 50 minutes = 5/6 hour) and a = (7/8)b (recall that 87.5% = 7/8). Using the average speed for the round trip, we can create the following equation:

a = 2d/(d/b + d/c)

a = 2d/(5/6 + d/c)

5/6 + d/c = 2d/a

d/c = 2d/a - 5/6

Recall that a = (7/8)b, so substituting (7/8)b for a, we have:

d/c = 2d/[(7/8)b] - 5/6

d/c = 2(d/b)/(7/8) - 5/6

d/c = 2(5/6)/(7/8) - 5/6

d/c = 5/3 x 8/7 - 5/6

d/c = 40/21 - 5/6

d/c = 80/42 - 35/42 = 45/42 = 15/14 hr

We see that this is more than 1 hour or 60 minutes, and the only answer choice that is greater than 60 minutes is choice E (66 minutes) so E is the correct answer.

_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Intern
Joined: 11 Dec 2016
Posts: 33
Re: It takes Tanya 50 minutes to drive to the country club. If the average  [#permalink]

### Show Tags

10 Apr 2018, 07:49
Bunuel Hi!

Can you please have a look at my solution and tell me if i've done it correct? Suggestions from other members will be appreciates. Thanks!
Attachments

File comment: @Bunuel Hi!

Can you please have a look at my solution and tell me if i've done it correct? Suggestions from other members will be appreciates. Thanks!

image1.jpeg [ 894.71 KiB | Viewed 889 times ]

Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 8883
Location: Pune, India
Re: It takes Tanya 50 minutes to drive to the country club. If the average  [#permalink]

### Show Tags

11 Apr 2018, 04:07
asfandabid wrote:
Bunuel Hi!

Can you please have a look at my solution and tell me if i've done it correct? Suggestions from other members will be appreciates. Thanks!

Note that this is not correct.
The average speed of x and y would be (x + y)/2 when they are maintained over the same stretch of TIME.
The average speed of x and y is 2xy/(x + y) when they are maintained over the same stretch of DISTANCE.

You can easily derive these from Average Speed = Total Distance / Total Time

Check this post for more: https://www.veritasprep.com/blog/2015/0 ... -the-gmat/
_________________

Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

Intern
Joined: 11 Dec 2016
Posts: 33
Re: It takes Tanya 50 minutes to drive to the country club. If the average  [#permalink]

### Show Tags

11 Apr 2018, 06:25
VeritasPrepKarishma

Got it, thanks!!
Intern
Joined: 24 Apr 2016
Posts: 30
Re: It takes Tanya 50 minutes to drive to the country club. If the average  [#permalink]

### Show Tags

14 Apr 2018, 17:09
VeritasPrepKarishma wrote:
Bunuel wrote:
It takes Tanya 50 minutes to drive to the country club. If the average speed of the entire round trip to the club is 87.5% of the average speed on the way to the club, how many minutes approximately will it take Tanya to drive home from the country club?

A. 42 minutes.
B. 48 minutes.
C. 52 minutes.
D. 54 minutes.
E. 66 minutes.

When distances traveled on two legs of a journey are the same,

Avg Speed = $$\frac{2ab}{(a + b)}$$

$$(\frac{7}{8})s = \frac{2*s *b}{(s + b)}$$
$$7(s + b) = 16b$$
$$b = (\frac{7}{9})s$$

So speed of going from club to home is (7/9)s
Time taken = 50*(9/7) = more than 63 mins

Method 2: I would approximate here using the concept of average speed when same distance is covered at different speeds:
Speed on one leg is s and average is (7/8)s. If speed on the other leg were (6/8)s, the average would be slightly less than (7/8)s. So speed on the other leg must be a bit more than (6/8)s = (3/4)s

So time taken on the second leg would be a bit less than 50*(4/3) = 66.66

(The option given is quite a bit off from the actual answer. That usually shouldn't be the case in an actual GMAT question.)

Hi VeritasPrepKarishma - Would you mind letting me know how you knew right away that 87.5% = 7/8? I know that 1/8 = .125 but didn't put together that 7x that would be 7/8. Is this something to be memorized as well?
Intern
Status: GMAT in August 2018
Joined: 05 Mar 2018
Posts: 46
Location: India
WE: Law (Consulting)
Re: It takes Tanya 50 minutes to drive to the country club. If the average  [#permalink]

### Show Tags

14 Apr 2018, 21:53
Ok I solved this a bit differently, may be a fluke!

Going:
T= D/S
50/60= D/100 --> assumed speed as 100

Returning:
T=D/S
t2 = D/s2 --> I don't know s2 here, but I know their avg speed is 87.5. Thus solving I get s2 as 75

Noe distance D is constant. Thus 50*100/60 (from going) is equal to t2*75 (from return)... This gives us t2 as 66.66666.... E

Not sure if this works always!

Bunuel the great, is the approach ok? Thanks.

Sent from my iPad using GMAT Club Forum
Re: It takes Tanya 50 minutes to drive to the country club. If the average   [#permalink] 14 Apr 2018, 21:53
Display posts from previous: Sort by

# It takes Tanya 50 minutes to drive to the country club. If the average

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.