Bunuel wrote:
On the number line, point R has coordinate r and point T has coordinate t. Is t < 0?
(1) -1 < r < 0
(2) The distance between R and T is equal to r²
\(t\,\,\mathop < \limits^? \,\,0\)
\(\left( 1 \right)\,\,\, - 1 < r < 0\,\,\,\left\{ \begin{gathered}\\
\,{\text{Take}}\,\,\left( {r,t} \right) = \left( { - 0.5,0} \right)\,\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\text{NO}}} \right\rangle \hfill \\\\
\,{\text{Take}}\,\,\left( {r,t} \right) = \left( { - 0.5, - 1} \right)\,\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle \hfill \\ \\
\end{gathered} \right.\)
\(\left( 2 \right)\,\,\,\left| {r - t} \right| = {r^2}\,\,\,\left\{ \begin{gathered}\\
\,{\text{Take}}\,\,\left( {r,t} \right) = \left( {0,0} \right)\,\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\text{NO}}} \right\rangle \hfill \\\\
\,{\text{Take}}\,\,\left( {r,t} \right) = \left( { - 1, - 2} \right)\,\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle \hfill \\ \\
\end{gathered} \right.\)
\(\left( {1 + 2} \right)\,\,\,\,\,\left| {r - t} \right| = {r^2}\,\,\,\,\mathop \Rightarrow \limits^{{\text{squaring}}} \,\,\,\,\,{\left( {r - t} \right)^2} = {r^4}\,\,\,\,\, \Rightarrow \,\,\,\,{r^2} - 2rt + {t^2} = {r^4}\,\,\,\,\,\left( * \right)\)
\(- 1 < r < 0\,\,\,\,\,\, \Rightarrow \,\,\,\,{r^4} < {r^2}\,\,\,\,\mathop \Rightarrow \limits^{\left( * \right)} \,\,\,\,\, - 2rt + {t^2} = {r^4} - {r^2} < 0\)
\(\left. \begin{gathered}\\
- 2rt + {t^2} < 0 \hfill \\\\
{t^2} \geqslant 0 \hfill \\ \\
\end{gathered} \right\}\,\,\,\,\,\, \Rightarrow \,\,\,\, - 2rt < 0\,\,\,\,\,\,\,\mathop \Rightarrow \limits^{r\, < \,\,0} \,\,\,t < 0\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle \,\,\,\,\,\, \Rightarrow \,\,\,\,\,{\text{SUFF}}.\,\)
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.