Last visit was: 25 Apr 2024, 21:38 It is currently 25 Apr 2024, 21:38

Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
SORT BY:
Date
Tags:
Show Tags
Hide Tags
User avatar
Manager
Manager
Joined: 17 Aug 2009
Posts: 114
Own Kudos [?]: 1250 [2]
Given Kudos: 25
Send PM
Math Expert
Joined: 02 Sep 2009
Posts: 92915
Own Kudos [?]: 619051 [3]
Given Kudos: 81595
Send PM
User avatar
Manager
Manager
Joined: 12 Mar 2010
Posts: 219
Own Kudos [?]: 1215 [0]
Given Kudos: 86
Concentration: Marketing, Entrepreneurship
GMAT 1: 680 Q49 V34
Send PM
Math Expert
Joined: 02 Sep 2009
Posts: 92915
Own Kudos [?]: 619051 [0]
Given Kudos: 81595
Send PM
Re: Multiple modulus inequalities [#permalink]
Expert Reply
bsaikrishna wrote:
Could somebody explain this in detail, please?

I didn't get the concept of roots here, it doesn't make the equation zero - isn't it?


When x<=0 then |x|=x and if x>0 then |x|=-x.

For |x-10|: when x<=10 then |x-10|=-(x-10) (because if x<=10 then x-10<=0) and when x>10 then |x-10|=x-10 (because if x>10 then x-10>0). So, zaarathelab calls "roots" (you can also call "critical point" or "check point") the values of x for which the expression in || equals to zero: in two different cases when x<that value and x>that value the absolute values expands with different sign (it switches the sign at this value).

Check Absolute Values chapter of Math Book for more: math-absolute-value-modulus-86462.html

Hope it helps.
Manager
Manager
Joined: 06 Jan 2012
Status:May The Force Be With Me (D-DAY 15 May 2012)
Posts: 165
Own Kudos [?]: 2095 [0]
Given Kudos: 33
Location: India
Concentration: General Management, Entrepreneurship
Send PM
Re: Multiple modulus inequalities [#permalink]
Hi,

I solved the modulus by taking the positive & negative scenarios of each modulus. I solved them separately & arrived at 1/2 <= x & x<= -1/2.

Am I on the right track or messed up some where??

Originally posted by boomtangboy on 01 Feb 2012, 02:55.
Last edited by boomtangboy on 01 Feb 2012, 03:05, edited 1 time in total.
Math Expert
Joined: 02 Sep 2009
Posts: 92915
Own Kudos [?]: 619051 [0]
Given Kudos: 81595
Send PM
Re: Multiple modulus inequalities [#permalink]
Expert Reply
boomtangboy wrote:
Hi,

I solved the modulus by taking the positive & negative scenarios of each modulus. I solved them separately & arrived at 1/2 <= x & x<= -1/2.

Am I on the right track or messed up some where??


The answer to the initial question is x<=3/2 or 17/8<=x, so "1/2 <= x & x<= -1/2" is not right. Check my previous post: you should check different cases for different ranges to get the correct answer.
User avatar
Intern
Intern
Joined: 25 Sep 2012
Posts: 7
Own Kudos [?]: 32 [0]
Given Kudos: 13
Concentration: General Management
Send PM
Re: Multiple modulus inequalities [#permalink]
Bunuel wrote:
zaarathelab wrote:
Hi guys

Need to know how to solve multiple modulus inequalities

Ex - Solve |x-10| - |2x+3| <= |5x-10|

I do understand that we need to first find the roots, which happen to be 10, -3/2 and 2 in this case

we can then divide them into intervals -

x<-3/2
-3/2<x<2
2<x<10
x>10

what do we do post this division into intervals?


If we dot he way you are proposing:

Yes, there are 3 check point at which absolute values in the example change their sign: -3/2, 2, and 10 (te values of x for which the expression in || equals to zero). Then you should expand the modulus in these ranges:

A. \(x<-\frac{3}{2}\) --> \(|x-10|-|2x+3|\leq{|5x-10|}\) --> \(-(x-10)+(2x+3)\leq{-(5x-10)}\) --> \(6x\leq{-3}\) --> \(x\leq{-\frac{1}{2}\) --> as we considering the range when \(x<-\frac{3}{2}\), then finally we should write \(x<-\frac{3}{2}\):
----(\(-\frac{3}{2}\))---------------------------------

B. \(-\frac{3}{2}\leq{x}\leq{2}\) --> \(-(x-10)-(2x+3)\leq{-(5x10)}\) --> \(2x<=3\) --> \(x<={\frac{3}{2}\) --> \({-\frac{3}{2}}\leq{x}\leq{\frac{3}{2}}\);
----(\(-\frac{3}{2}\))----(\(\frac{3}{2}\))-------------------------

C. \(2<x<10\) --> \(-(x-10)-(2x+3)\leq{5x-10}\) --> \(17\leq{8x}\) --> \(x\geq{\frac{17}{8}}\) --> \({\frac{17}{8}}\leq{x}<10\);
---------------------(\(\frac{17}{8}\))--------(\(10\))----

D. \(x\geq{10}\) --> \((x-10)-(2x+3)\leq{5x-10}\) --> \(-3\leq{6x\) --> \(x\geq{-\frac{1}{2}}\) --> \(x\geq{10}\);
---------------------(\(\frac{17}{8}\))--------(\(10\))----

After combining the ranges we've got, we can conclude that the ranges in which the given inequality holds true are:
\(x\leq{\frac{3}{2}}\) and \({\frac{17}{8}}\leq{x}\)
----(\(-\frac{3}{2}\))----(\(\frac{3}{2}\))----(\(\frac{17}{8}\))--------(\(10\))-----


One important detail when you define the critical points (10, -3/2 and 2) you should include them in either of intervals you check. So when you wrote:
x<-3/2
-3/2<x<2
2<x<10
x>10

You should put equal sign for each of the critical point in either interval. For example:
x=<-3/2
-3/2<x<=2
2<x<1=0
x>10

Notice, that in solution I put the equal sign in different way, but it doesn't matter. It's important just to consider the cases when x equals to the critical points and include them when expanding given inequality.



Hi Brunel,

How do we decide the signs in front of the modulus in the equation. :(
Eg:: |x-10| - |2x+3| <= |5x-10|......say we are looking in an interval - 3/2 to 2. then based on what concentration do we put +or - sign in front of the modulus.


and please explain >> step 1----------x = sqrt (x^2) ?
< step w--------------- => x = |x| ? How do this. please explain concept behind this math.

Thanks!!
Math Expert
Joined: 02 Sep 2009
Posts: 92915
Own Kudos [?]: 619051 [1]
Given Kudos: 81595
Send PM
Re: Multiple modulus inequalities [#permalink]
1
Kudos
Expert Reply
Maverick04308 wrote:
Hi Brunel,

How do we decide the signs in front of the modulus in the equation. :(
Eg:: |x-10| - |2x+3| <= |5x-10|......say we are looking in an interval - 3/2 to 2. then based on what concentration do we put +or - sign in front of the modulus.


and please explain >> step 1----------x = sqrt (x^2) ?
< step w--------------- => x = |x| ? How do this. please explain concept behind this math.

Thanks!!


Explained here: multiple-modulus-inequalities-88174.html#p1037473

Hope it helps.
Intern
Intern
Joined: 26 Dec 2018
Posts: 20
Own Kudos [?]: 6 [0]
Given Kudos: 44
Concentration: Finance, Economics
Send PM
Multiple modulus inequalities [#permalink]
Bunuel wrote:
zaarathelab wrote:
Hi guys

Need to know how to solve multiple modulus inequalities

Ex - Solve |x-10| - |2x+3| <= |5x-10|

I do understand that we need to first find the roots, which happen to be 10, -3/2 and 2 in this case

we can then divide them into intervals -

x<-3/2
-3/2<x<2
2<x<10
x>10


Bun

what do we do post this division into intervals?


If we dot he way you are proposing:

Yes, there are 3 check point at which absolute values in the example change their sign: -3/2, 2, and 10 (te values of x for which the expression in || equals to zero). Then you should expand the modulus in these ranges:

A. \(x<-\frac{3}{2}\) --> \(|x-10|-|2x+3|\leq{|5x-10|}\) --> \(-(x-10)+(2x+3)\leq{-(5x-10)}\) --> \(6x\leq{-3}\) --> \(x\leq{-\frac{1}{2}\) --> as we considering the range when \(x<-\frac{3}{2}\), then finally we should write \(x<-\frac{3}{2}\):
----(\(-\frac{3}{2}\))---------------------------------

B. \(-\frac{3}{2}\leq{x}\leq{2}\) --> \(-(x-10)-(2x+3)\leq{-(5x10)}\) --> \(2x<=3\) --> \(x<={\frac{3}{2}\) --> \({-\frac{3}{2}}\leq{x}\leq{\frac{3}{2}}\);
----(\(-\frac{3}{2}\))----(\(\frac{3}{2}\))-------------------------

C. \(2<x<10\) --> \(-(x-10)-(2x+3)\leq{5x-10}\) --> \(17\leq{8x}\) --> \(x\geq{\frac{17}{8}}\) --> \({\frac{17}{8}}\leq{x}<10\);
---------------------(\(\frac{17}{8}\))--------(\(10\))----

D. \(x\geq{10}\) --> \((x-10)-(2x+3)\leq{5x-10}\) --> \(-3\leq{6x\) --> \(x\geq{-\frac{1}{2}}\) --> \(x\geq{10}\);
---------------------(\(\frac{17}{8}\))--------(\(10\))----

After combining the ranges we've got, we can conclude that the ranges in which the given inequality holds true are:
\(x\leq{\frac{3}{2}}\) and \({\frac{17}{8}}\leq{x}\)
----(\(-\frac{3}{2}\))----(\(\frac{3}{2}\))----(\(\frac{17}{8}\))--------(\(10\))-----


One important detail when you define the critical points (10, -3/2 and 2) you should include them in either of intervals you check. So when you wrote:
x<-3/2
-3/2<x<2
2<x<10
x>10

You should put equal sign for each of the critical point in either interval. For example:
x=<-3/2
-3/2<x<=2
2<x<1=0
x>10

Notice, that in solution I put the equal sign in different way, but it doesn't matter. It's important just to consider the cases when x equals to the critical points and include them when expanding given inequality.


Bunuel,

I believe that I follow along entirely until you reach the point where you are determining the viability of the solutions.

How have you checked the viability of the solutions? In this tutorial:https://gmatclub.com/forum/math-absolute-value-modulus-86462.html

It seems to teach that one must simply determine if the solution is within the range they are checking and if not, then it is not viable.

So, in this example, would x<=-1/2 satisfy the criteria of x<-3/2 because x would have to be less than -1/2 to be less than 3/2?

Also, how do you conclude that the inequality does not hold between 3/2 and 17/8? Again, I was able to arrive at the same numbers, but I am uncertain how you figured that the inequality does not hold in that interval.

Sorry as I am a bit lost! Thank you in advance for your help!


Best,


NCH2024
Math Expert
Joined: 02 Sep 2009
Posts: 92915
Own Kudos [?]: 619051 [1]
Given Kudos: 81595
Send PM
Re: Multiple modulus inequalities [#permalink]
1
Kudos
Expert Reply
nch2024 wrote:
Bunuel wrote:
zaarathelab wrote:
Hi guys

Need to know how to solve multiple modulus inequalities

Ex - Solve |x-10| - |2x+3| <= |5x-10|

I do understand that we need to first find the roots, which happen to be 10, -3/2 and 2 in this case

we can then divide them into intervals -

x<-3/2
-3/2<x<2
2<x<10
x>10


Bun

what do we do post this division into intervals?


If we dot he way you are proposing:

Yes, there are 3 check point at which absolute values in the example change their sign: -3/2, 2, and 10 (te values of x for which the expression in || equals to zero). Then you should expand the modulus in these ranges:

A. \(x<-\frac{3}{2}\) --> \(|x-10|-|2x+3|\leq{|5x-10|}\) --> \(-(x-10)+(2x+3)\leq{-(5x-10)}\) --> \(6x\leq{-3}\) --> \(x\leq{-\frac{1}{2}\) --> as we considering the range when \(x<-\frac{3}{2}\), then finally we should write \(x<-\frac{3}{2}\):
----(\(-\frac{3}{2}\))---------------------------------

B. \(-\frac{3}{2}\leq{x}\leq{2}\) --> \(-(x-10)-(2x+3)\leq{-(5x10)}\) --> \(2x<=3\) --> \(x<={\frac{3}{2}\) --> \({-\frac{3}{2}}\leq{x}\leq{\frac{3}{2}}\);
----(\(-\frac{3}{2}\))----(\(\frac{3}{2}\))-------------------------

C. \(2<x<10\) --> \(-(x-10)-(2x+3)\leq{5x-10}\) --> \(17\leq{8x}\) --> \(x\geq{\frac{17}{8}}\) --> \({\frac{17}{8}}\leq{x}<10\);
---------------------(\(\frac{17}{8}\))--------(\(10\))----

D. \(x\geq{10}\) --> \((x-10)-(2x+3)\leq{5x-10}\) --> \(-3\leq{6x\) --> \(x\geq{-\frac{1}{2}}\) --> \(x\geq{10}\);
---------------------(\(\frac{17}{8}\))--------(\(10\))----

After combining the ranges we've got, we can conclude that the ranges in which the given inequality holds true are:
\(x\leq{\frac{3}{2}}\) and \({\frac{17}{8}}\leq{x}\)
----(\(-\frac{3}{2}\))----(\(\frac{3}{2}\))----(\(\frac{17}{8}\))--------(\(10\))-----


One important detail when you define the critical points (10, -3/2 and 2) you should include them in either of intervals you check. So when you wrote:
x<-3/2
-3/2<x<2
2<x<10
x>10

You should put equal sign for each of the critical point in either interval. For example:
x=<-3/2
-3/2<x<=2
2<x<1=0
x>10

Notice, that in solution I put the equal sign in different way, but it doesn't matter. It's important just to consider the cases when x equals to the critical points and include them when expanding given inequality.


Bunuel,

I believe that I follow along entirely until you reach the point where you are determining the viability of the solutions.

How have you checked the viability of the solutions? In this tutorial:https://gmatclub.com/forum/math-absolute-value-modulus-86462.html

It seems to teach that one must simply determine if the solution is within the range they are checking and if not, then it is not viable.

So, in this example, would x<=-1/2 satisfy the criteria of x<-3/2 because x would have to be less than -1/2 to be less than 3/2?

Also, how do you conclude that the inequality does not hold between 3/2 and 17/8? Again, I was able to arrive at the same numbers, but I am uncertain how you figured that the inequality does not hold in that interval.

Sorry as I am a bit lost! Thank you in advance for your help!


Best,


NCH2024


-3/2 < -1/2, so x's which are less than -3/2 are also less than -1/2.

----(\(-\frac{3}{2}\))------------\((-\frac{1}{2})\)---------------------
Intern
Intern
Joined: 26 Dec 2018
Posts: 20
Own Kudos [?]: 6 [0]
Given Kudos: 44
Concentration: Finance, Economics
Send PM
Re: Multiple modulus inequalities [#permalink]
Bunuel wrote:
Bunuel wrote:
Hi guys

Need to know how to solve multiple modulus inequalities

Ex - Solve |x-10| - |2x+3| <= |5x-10|

I do understand that we need to first find the roots, which happen to be 10, -3/2 and 2 in this case

we can then divide them into intervals -

x<-3/2
-3/2<x<2
2<x<10
x>10


-3/2 < -1/2, so x's which are less than -3/2 are also less than -1/2.

----(\(-\frac{3}{2}\))------------\((-\frac{1}{2})\)---------------------
[/quote]

Thank you, Bunuel!
GMAT Club Bot
Re: Multiple modulus inequalities [#permalink]
Moderator:
Math Expert
92915 posts

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne