Author 
Message 
TAGS:

Hide Tags

Intern
Joined: 18 Mar 2012
Posts: 47
GPA: 3.7

Shannon and Maxine work in the same building and leave work [#permalink]
Show Tags
15 May 2012, 10:39
8
This post was BOOKMARKED
Question Stats:
73% (04:18) correct 27% (04:54) wrong based on 164 sessions
HideShow timer Statistics
Shannon and Maxine work in the same building and leave work at the same time. Shannon lives due north of work and Maxine lives due south. The distance between Maxine's house and Shannon's house is 60 miles. If they both drive home at the rate 2R miles per hour, Maxine arrives home 40 minutes after Shannon. If Maxine rider her bike home at the rate of R per hour and Shannon still drives at a rate of 2R miles per hour, Shannon arrives home 2 hours before Maxine. How far does maxine live from work? A. 20 B. 34 C. 38 D. 40 E. 46
Official Answer and Stats are available only to registered users. Register/ Login.



Math Expert
Joined: 02 Sep 2009
Posts: 44566

Re: Shannon and Maxine work in the same building and leave work [#permalink]
Show Tags
16 May 2012, 03:03
2
This post received KUDOS
Expert's post
1
This post was BOOKMARKED
alexpavlos wrote: Shannon and Maxine work in the same building and leave work at the same time. Shannon lives due north of work and Maxine lives due south. The distance between Maxine's house and Shannon's house is 60 miles. If they both drive home at the rate 2R miles per hour, Maxine arrives home 40 minutes after Shannon. If Maxine rider her bike home at the rate of R per hour and Shannon still drives at a rate of 2R miles per hour, Shannon arrives home 2 hours before Maxine. How far does maxine live from work?
A. 20 B. 34 C. 38 D. 40 E. 46 Say Maxine lives \(d\) miles from office, then Shannon lives \(60d\) miles from office. If they both drive home at the rate 2R miles per hour, Maxine arrives home 40 minutes after Shannon > \(\frac{d}{2r}=\frac{60d}{2r}+\frac{2}{3}\) > \(3d=90+2r\); If Maxine rider her bike home at the rate of R per hour and Shannon still drives at a rate of 2R miles per hour, Shannon arrives home 2 hours before Maxine > \(\frac{d}{r}=\frac{60d}{2r}+2\) > \(3d=60+4r\); Solve \(3d=90+2r\) and \(3d=60+4r\) for \(d\) > \(d=40\). Answer: D.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 8024
Location: Pune, India

Re: Shannon and Maxine work in the same building and leave work [#permalink]
Show Tags
16 May 2012, 09:49
2
This post received KUDOS
Expert's post
2
This post was BOOKMARKED
alexpavlos wrote: Shannon and Maxine work in the same building and leave work at the same time. Shannon lives due north of work and Maxine lives due south. The distance between Maxine's house and Shannon's house is 60 miles. If they both drive home at the rate 2R miles per hour, Maxine arrives home 40 minutes after Shannon. If Maxine rider her bike home at the rate of R per hour and Shannon still drives at a rate of 2R miles per hour, Shannon arrives home 2 hours before Maxine. How far does maxine live from work?
A. 20 B. 34 C. 38 D. 40 E. 46 Here is the ratios approach to the problem: Shannon drives at the speed of 2R in both the cases so she takes the same time. In the first case Maxine reaches home 40 mins after Shannon. In the second case, Maxine reaches 2 hrs after Shannon. Why did Maxine take 1 hr 20 mins extra in the second case? Because she drove at half the speed. Speed1: Speed 2 = 2:1 Time 1: Time 2 = 1:2 ( since distance stays the same) The difference between Time1 and Time 2 is 1 hr 20 mins = 80 mins. So Time 1 must be 1hr 20 mins i.e. time taken by Maxine when she drives at speed 2R. Time taken by Shannon must be 1 hr 20 mins  40 mins = 40 mins (because she reaches 40 mins early) When their speeds were same in the first case, Time taken by Maxine : Time taken by Shannon = 80 mins :40 mins = 2:1 Distance traveled by Maxine : Distance traveled by Shannon = 2:1 Total distance is 60 miles so Maxine lives 40 miles away and Shannon lives 20 miles away from office.
_________________
Karishma Veritas Prep  GMAT Instructor My Blog
Get started with Veritas Prep GMAT On Demand for $199
Veritas Prep Reviews



Current Student
Joined: 06 Sep 2013
Posts: 1919
Concentration: Finance

Re: Shannon and Maxine work in the same building and leave work [#permalink]
Show Tags
Updated on: 09 Apr 2014, 08:53
2
This post received KUDOS
alex1233 wrote: Shannon and Maxine work in the same building and leave work at the same time. Shannon lives due north of work and Maxine lives due south. The distance between Maxine's house and Shannon's house is 60 miles. If they both drive home at the rate 2R miles per hour, Maxine arrives home 40 minutes after Shannon. If Maxine rider her bike home at the rate of R per hour and Shannon still drives at a rate of 2R miles per hour, Shannon arrives home 2 hours before Maxine. How far does maxine live from work?
A. 20 B. 34 C. 38 D. 40 E. 46 Nice question +1 We have that X/24  (60X)/2R = 40 Also X/R  (60X)/2R = 120 So we get that 2x  60 = 80R 3x  60 = 240R Get rid of R 120 = 3x x = 40 Hence answer is D Hope it helps Cheers! J Y'all also, one can do the following (X/2R)(60X/2R) = 2/3 (X/R)(60X/2R)=2 Therefore we have the following pair of equations: 6x180=4r (1) 3x60=4r (2) Therefore we can equate both and obtain x=40. Hence D Hope it helps Cheers J
Originally posted by jlgdr on 31 Dec 2013, 10:24.
Last edited by jlgdr on 09 Apr 2014, 08:53, edited 1 time in total.



Intern
Joined: 14 Jan 2014
Posts: 2

Re: Shannon and Maxine work in the same building and leave work [#permalink]
Show Tags
15 Feb 2014, 00:00
VeritasPrepKarishma wrote: alexpavlos wrote: Shannon and Maxine work in the same building and leave work at the same time. Shannon lives due north of work and Maxine lives due south. The distance between Maxine's house and Shannon's house is 60 miles. If they both drive home at the rate 2R miles per hour, Maxine arrives home 40 minutes after Shannon. If Maxine rider her bike home at the rate of R per hour and Shannon still drives at a rate of 2R miles per hour, Shannon arrives home 2 hours before Maxine. How far does maxine live from work?
A. 20 B. 34 C. 38 D. 40 E. 46 Here is the ratios approach to the problem: Shannon drives at the speed of 2R in both the cases so she takes the same time. In the first case Maxine reaches home 40 mins after Shannon. In the second case, Maxine reaches 2 hrs after Shannon. Why did Maxine take 1 hr 20 mins extra in the second case? Because she drove at half the speed. Speed1: Speed 2 = 2:1 Time 1: Time 2 = 1:2 ( since distance stays the same) The difference between Time1 and Time 2 is 1 hr 20 mins = 80 mins. So Time 1 must be 1hr 20 mins i.e. time taken by Maxine when she drives at speed 2R. Time taken by Shannon must be 1 hr 20 mins  40 mins = 40 mins (because she reaches 40 mins early) When their speeds were same in the first case, Time taken by Maxine : Time taken by Shannon = 80 mins :40 mins = 2:1 Distance traveled by Maxine : Distance traveled by Shannon = 2:1 Total distance is 60 miles so Maxine lives 40 miles away and Shannon lives 20 miles away from office. Hi Karishma, You mentioned time difference between time1 and time 2 is 80 mins... How dod you take the value for time1 as 80 mins? Please explain the basis. ThNks



Manager
Joined: 03 Jan 2015
Posts: 66
Concentration: Strategy, Marketing
WE: Research (Pharmaceuticals and Biotech)

Re: Shannon and Maxine work in the same building and leave work [#permalink]
Show Tags
28 Jan 2015, 10:20
VeritasPrepKarishma wrote: alexpavlos wrote: Shannon and Maxine work in the same building and leave work at the same time. Shannon lives due north of work and Maxine lives due south. The distance between Maxine's house and Shannon's house is 60 miles. If they both drive home at the rate 2R miles per hour, Maxine arrives home 40 minutes after Shannon. If Maxine rider her bike home at the rate of R per hour and Shannon still drives at a rate of 2R miles per hour, Shannon arrives home 2 hours before Maxine. How far does maxine live from work?
A. 20 B. 34 C. 38 D. 40 E. 46 Here is the ratios approach to the problem: Shannon drives at the speed of 2R in both the cases so she takes the same time. In the first case Maxine reaches home 40 mins after Shannon. In the second case, Maxine reaches 2 hrs after Shannon. Why did Maxine take 1 hr 20 mins extra in the second case? Because she drove at half the speed. Speed1: Speed 2 = 2:1 Time 1: Time 2 = 1:2 ( since distance stays the same) The difference between Time1 and Time 2 is 1 hr 20 mins = 80 mins. So Time 1 must be 1hr 20 mins i.e. time taken by Maxine when she drives at speed 2R. Time taken by Shannon must be 1 hr 20 mins  40 mins = 40 mins (because she reaches 40 mins early) When their speeds were same in the first case, Time taken by Maxine : Time taken by Shannon = 80 mins :40 mins = 2:1 Distance traveled by Maxine : Distance traveled by Shannon = 2:1 Total distance is 60 miles so Maxine lives 40 miles away and Shannon lives 20 miles away from office. Hi Karisma,
You have an interesting approach. However, I am not sure if I understand you well here. Maxine reaches 2 hrs after Shanon. So Maxine should take 120 min more and not 1 hr 20 min (=80 min). Am I correct? If yes, how will your proposed solution change? Can you please explain?
TO



Manager
Joined: 03 Jan 2015
Posts: 66
Concentration: Strategy, Marketing
WE: Research (Pharmaceuticals and Biotech)

Re: Shannon and Maxine work in the same building and leave work [#permalink]
Show Tags
28 Jan 2015, 10:25
jlgdr wrote: alex1233 wrote: Shannon and Maxine work in the same building and leave work at the same time. Shannon lives due north of work and Maxine lives due south. The distance between Maxine's house and Shannon's house is 60 miles. If they both drive home at the rate 2R miles per hour, Maxine arrives home 40 minutes after Shannon. If Maxine rider her bike home at the rate of R per hour and Shannon still drives at a rate of 2R miles per hour, Shannon arrives home 2 hours before Maxine. How far does maxine live from work?
A. 20 B. 34 C. 38 D. 40 E. 46 Nice question +1 We have that X/24  (60X)/2R = 40 Also X/R  (60X)/2R = 120 So we get that 2x  60 = 80R 3x  60 = 240R Get rid of R 120 = 3x x = 40 Hence answer is D Hope it helps Cheers! J Y'all also, one can do the following (X/2R)(60X/2R) = 2/3 (X/R)(60X/2R)=2 Therefore we have the following pair of equations: 6x180=4r (1) 3x60=4r (2) Therefore we can equate both and obtain x=40. Hence D Hope it helps Cheers J Hi,
In the line "We have that X/24  (60X)/2R = 40" of your solution, can you please clarify from where did you get 24 in the denominator?
TO



Intern
Joined: 28 Dec 2014
Posts: 3

Re: Shannon and Maxine work in the same building and leave work [#permalink]
Show Tags
28 Jan 2015, 12:52
thorinoakenshield wrote: jlgdr wrote: alex1233 wrote: Shannon and Maxine work in the same building and leave work at the same time. Shannon lives due north of work and Maxine lives due south. The distance between Maxine's house and Shannon's house is 60 miles. If they both drive home at the rate 2R miles per hour, Maxine arrives home 40 minutes after Shannon. If Maxine rider her bike home at the rate of R per hour and Shannon still drives at a rate of 2R miles per hour, Shannon arrives home 2 hours before Maxine. How far does maxine live from work?
A. 20 B. 34 C. 38 D. 40 E. 46 Nice question +1 We have that X/24  (60X)/2R = 40 Also X/R  (60X)/2R = 120 So we get that 2x  60 = 80R 3x  60 = 240R Get rid of R 120 = 3x x = 40 Hence answer is D Hope it helps Cheers! J Y'all also, one can do the following (X/2R)(60X/2R) = 2/3 (X/R)(60X/2R)=2 Therefore we have the following pair of equations: 6x180=4r (1) 3x60=4r (2) Therefore we can equate both and obtain x=40. Hence D Hope it helps Cheers J Hi,
In the line "We have that X/24  (60X)/2R = 40" of your solution, can you please clarify from where did you get 24 in the denominator?
TOShould be 2R. (4 on keykoard is too close to R = typo)



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 8024
Location: Pune, India

Re: Shannon and Maxine work in the same building and leave work [#permalink]
Show Tags
29 Jan 2015, 00:31
thorinoakenshield wrote: Hi Karisma,
You have an interesting approach. However, I am not sure if I understand you well here. Maxine reaches 2 hrs after Shanon. So Maxine should take 120 min more and not 1 hr 20 min (=80 min). Am I correct? If yes, how will your proposed solution change? Can you please explain?
TO
The solution I have given above is correct. There are two cases: One in which both drive home  here Maxine reaches 40 mins after Shannon In the other case, Maxine bikes and Shannon drives  here Maxine reaches 120 mins after Shannon So difference in time taken by Maxine in the two cases is 120 mins  40 mins = 80 mins Suggest you to check out ratios posts: http://www.veritasprep.com/blog/2011/03 ... ofratios/http://www.veritasprep.com/blog/2011/03 ... osintsd/
_________________
Karishma Veritas Prep  GMAT Instructor My Blog
Get started with Veritas Prep GMAT On Demand for $199
Veritas Prep Reviews



NonHuman User
Joined: 09 Sep 2013
Posts: 6643

Re: Shannon and Maxine work in the same building and leave work [#permalink]
Show Tags
06 Apr 2018, 00:38
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources




Re: Shannon and Maxine work in the same building and leave work
[#permalink]
06 Apr 2018, 00:38






