sagarbuss wrote:
WoundedTiger wrote:
The average of a set of five distinct integers is 300. If each number is less than 2,000, and the median of the set is the greatest possible value, what is the sum of the two smallest numbers?
A. -4,494
B. -3,997
C. -3,494
D. -3,194
E. The answer cannot be determined from the information given
Kudos for the correct solution
BunuelCan you please clarify the ambiguity... the question stem says
1. distinct integers.
2. median is equal to largest number, making all three digits equal contradicting #1...
since it is a prep company question, i guess the question is not badly framed...
In a set containing odd number of terms arranged in ascending order, the median is the middle value.
The numbers in this set can be distinct or same, positive or negative, even or odd, etc.
Maximization of median does not necessarily mean that the median has to be the biggest number in the set.
Value of median will depend upon the constraints of the question.
In this question it is given that the set contains 5 distinct integers with average of 300 or a sum of 1500.
We are also given that each number in the set is less than 2000.
So, the biggest number in the set can be 1999 followed by 1998 and 1997.
Here 1997 is our median as you need 2 numbers bigger than the median and 2 numbers less than the median.
Let a and b be the two numbers smaller than 1997.
So our set is (a,b,1997,1998,1999)
Now,
a+b+1997+1998+1999 = 1500
or a+b+5994=1500
or a+b = 1500-5994
or a+b=-4994
Answer:- A