Summer is Coming! Join the Game of Timers Competition to Win Epic Prizes. Registration is Open. Game starts Mon July 1st.

It is currently 16 Jul 2019, 13:38

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Twenty people at a meeting were born during the month of Sep

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Intern
Intern
avatar
Joined: 22 Jun 2014
Posts: 3
Twenty people at a meeting were born during the month of Sep  [#permalink]

Show Tags

New post 03 Aug 2014, 13:52
14
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

32% (02:05) correct 68% (01:59) wrong based on 186 sessions

HideShow timer Statistics


Twenty people at a meeting were born during the month of September, which has 30 days. The probability that at least two of the people in the room share the same birthday is closest to which of the following?

(A) 10%
(B) 33%
(C) 67%
(D) 90%
(E) 99%
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 56244
Re: Twenty people at a meeting were born during the month of Sep  [#permalink]

Show Tags

New post 13 Aug 2014, 07:39
4
3
kennaval wrote:
Twenty people at a meeting were born during the month of September, which has 30 days. The probability that at least two of the people in the room share the same birthday is closest to which of the following?

(A) 10%
(B) 33%
(C) 67%
(D) 90%
(E) 99%


PROBABILITY APPROACH:

P(at least two of the people share the same birthday) = 1 - P(none of the people share the same birthday) =
\(= 1 - \frac{30}{30}*\frac{29}{30}*\frac{28}{30}*\frac{27}{30}*\frac{26}{30}*...*\frac{11}{30} = 1 - \frac{30!}{(30^{20}*10!)}\approx{0.99}\). First person can have birthday on any day (30/30), the second on any but that day (29/30), the thrid on any but those two days (28/30), ...

Notice that the number we are subtracting from 1 is very, very small, so the final result will be very close to 100%.

COMBINATIONS APPROACH:

P(at least two of the people share the same birthday) = 1 - P(none of the people share the same birthday) =
\(= 1- \frac{C^{20}_{30}*20!}{30^{20}}=\frac{30!}{(30^{20}*10!)}\approx{0.99}\). \(C^{20}_{30}\) here is choosing 20 different days out of 30, 20! is the number of ways we can assign 20 people to those 20 days (by the way, we could write there \(P^{20}_{30}\) there instead of \(C^{20}_{30}*20!\), which is basically the same: choosing 20 out of 30 when the order of the selection matters) and the denominator (\(30^{20}\)) is the total number of way 20 people can have birthdays in September (each of them has 30 options).

Answer: E.

Hope it's clear.
_________________
General Discussion
Manager
Manager
User avatar
Joined: 22 Feb 2009
Posts: 158
GMAT ToolKit User
Re: Twenty people at a meeting were born during the month of Sep  [#permalink]

Show Tags

New post 03 Aug 2014, 14:51
1
kennaval wrote:
Twenty people at a meeting were born during the month of September, which has 30 days. The probability that at least two of the people in the room share the same birthday is closest to which of the following?
(A) 10%
(B) 33%
(C) 67%
(D) 90%
(E) 99%



The probability that at least two people sharing the same birthday = 1 - the probability that none of them sharing the same birthday
A = The number of ways of none of them sharing the same birthday = 30P20 = 30!/(30-20)! = 30!/10! = 11*12*...*29*30
B = The total number of possible ways of 20 people born in September = 20*20*....*20*20 = 20^30 ( each day has 20 options)
A/B = the probability that none of them sharing the same birthday
since B is much greater than A, A/B may equal 1%
--> The probability that at least two people sharing the same birthday = 1 - 1% = 99%

Answer E
_________________
.........................................................................
+1 Kudos please, if you like my post
Intern
Intern
avatar
Joined: 06 Apr 2014
Posts: 8
Location: United States (MI)
Concentration: Marketing, International Business
GPA: 3.4
GMAT ToolKit User
Re: Twenty people at a meeting were born during the month of Sep  [#permalink]

Show Tags

New post 03 Aug 2014, 14:54
at least two of the people = 1- no two people share the same bday
no two people share the same bday = (1st pick a day in the 30 days) * (2rd pick another day in the left 29 days)
= (1/30) * (29/29)
so, at least two of the people share differ = 1-(1/30) * (29/29) = 29/30 = 99%
Intern
Intern
avatar
Joined: 22 Jun 2014
Posts: 3
Re: Twenty people at a meeting were born during the month of Sep  [#permalink]

Show Tags

New post 04 Aug 2014, 12:27
I still don't get it. I thought it would be 1-(29/30)*(28/30). Does anyone have another way of figuring this out?
Manager
Manager
User avatar
B
Joined: 18 Jul 2013
Posts: 74
Location: Italy
GMAT 1: 600 Q42 V31
GMAT 2: 700 Q48 V38
GPA: 3.75
Re: Twenty people at a meeting were born during the month of Sep  [#permalink]

Show Tags

New post 04 Aug 2014, 14:08
vad3tha wrote:
kennaval wrote:
Twenty people at a meeting were born during the month of September, which has 30 days. The probability that at least two of the people in the room share the same birthday is closest to which of the following?
(A) 10%
(B) 33%
(C) 67%
(D) 90%
(E) 99%



The probability that at least two people sharing the same birthday = 1 - the probability that none of them sharing the same birthday
A = The number of ways of none of them sharing the same birthday = 30P20 = 30!/(30-20)! = 30!/10! = 11*12*...*29*30
B = The total number of possible ways of 20 people born in September = 20*20*....*20*20 = 20^30 ( each day has 20 options)
A/B = the probability that none of them sharing the same birthday
since B is much greater than A, A/B may equal 1%
--> The probability that at least two people sharing the same birthday = 1 - 1% = 99%

Answer E


hi vad3tha,

could you explain the red part please?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 56244
Re: Twenty people at a meeting were born during the month of Sep  [#permalink]

Show Tags

New post 13 Aug 2014, 07:41
vad3tha wrote:
kennaval wrote:
Twenty people at a meeting were born during the month of September, which has 30 days. The probability that at least two of the people in the room share the same birthday is closest to which of the following?
(A) 10%
(B) 33%
(C) 67%
(D) 90%
(E) 99%



The probability that at least two people sharing the same birthday = 1 - the probability that none of them sharing the same birthday
A = The number of ways of none of them sharing the same birthday = 30P20 = 30!/(30-20)! = 30!/10! = 11*12*...*29*30
B = The total number of possible ways of 20 people born in September = 20*20*....*20*20 = 20^30 ( each day has 20 options)
A/B = the probability that none of them sharing the same birthday
since B is much greater than A, A/B may equal 1%
--> The probability that at least two people sharing the same birthday = 1 - 1% = 99%

Answer E


It should be 30^20, instead of 20^30: each out of 20 people has 30 options - 30*30*...*30 = 30^20.
_________________
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 56244
Re: Twenty people at a meeting were born during the month of Sep  [#permalink]

Show Tags

New post 13 Aug 2014, 07:42
Director
Director
User avatar
S
Joined: 17 Dec 2012
Posts: 630
Location: India
Twenty people at a meeting were born during the month of Sep  [#permalink]

Show Tags

New post 02 Nov 2015, 20:48
It is easy to solve the problem by finding the probability where each person is born on a different day and subtracting it from 1.

Let us start with a single way. The first person can be born on Sep 1 , the second on Sep 2 and so on. So the probability of 20 persons born on different days = (1/30)*(1/30) *..20 times =1/(30^20)

How many such ways are there?

(1) the 20 days can be chosen from 30 days in 30C20 ways
(2) The birthdays of the 20 persons can be arranged in 20! ways

For the probability, we have to multiply 1/(30^20) by 30C20 and 20!

So the probability that the birthdays fall on different days = 30C20 * 20! / (30^20)

The probability that at least two persons share the same birthday is 1 - (30C20 *20!) / (30^20) = 99%(approx)
_________________
Srinivasan Vaidyaraman
Sravna Test Prep
http://www.sravnatestprep.com

Holistic and Systematic Approach
GMATH Teacher
User avatar
P
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 937
Re: Twenty people at a meeting were born during the month of Sep  [#permalink]

Show Tags

New post 15 Jan 2019, 06:42
kennaval wrote:
Twenty people at a meeting were born during the month of September, which has 30 days. The probability that at least two of the people in the room share the same birthday is closest to which of the following?

(A) 10%
(B) 33%
(C) 67%
(D) 90%
(E) 99%

\(? = 1 - P\left( {\underbrace {{\rm{all}}\,\,20\,\,{\rm{different}}\,\,{\rm{birthday}}\,\,{\rm{dates}}}_{{\rm{unfavorable}}}} \right)\)


\({\rm{Total}}:\,\,30 \cdot 30 \cdot \ldots \cdot 30 = {30^{20}}\,\,\,{\rm{equiprobable}}\,\,{\rm{possibilities}}\,\,\,\)

\({\rm{unfavorable}} = \,\,30 \cdot 29 \cdot \ldots \cdot 11\)


\(P\left( {{\rm{unfavorable}}} \right) = {{30 \cdot 29 \cdot \ldots \cdot 11} \over {{{30}^{20}}}} = 1 \cdot \underbrace {{{29} \over {30}} \cdot {{28} \over {30}} \cdot \ldots {{14} \over {30}}}_{ < < < \,\,1} \cdot \underbrace {{{13} \over {30}} \cdot {{12} \over {30}} \cdot {{11} \over {30}}}_{ \cong \,\,0.05} < < < 0.05 = 5\%\)

\(?\,\,\, > > > \,\,\,100\% - 5\% \,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\left( {\rm{E}} \right)\)


This solution follows the notations and rationale taught in the GMATH method.

Regards,
Fabio.
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net
Target Test Prep Representative
User avatar
D
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 6923
Location: United States (CA)
Re: Twenty people at a meeting were born during the month of Sep  [#permalink]

Show Tags

New post 17 Jan 2019, 19:08
kennaval wrote:
Twenty people at a meeting were born during the month of September, which has 30 days. The probability that at least two of the people in the room share the same birthday is closest to which of the following?

(A) 10%
(B) 33%
(C) 67%
(D) 90%
(E) 99%


The probability that at least two of the people in the room share the same birthday is equivalent to subtracting from 1 the probability that no two people in the room share the same birthday.

The first person can have a birthday on any of the 30 days of September. In order to avoid a birthday match, the second person can have a birthday on any of the remaining 29 days. Similarly, to avoid a match with either of the first two people, the third person can have a birthday on any of the remaining 28 days. And so forth, down to the twentieth person. We can then express each event as a probability by dividing by 30, the total number of days in September. The first person’s probability of not matching is 30/30 (because they can be born on any day). The second person’s probability of not matching the first person is 29/30, and the third person’s probability of not matching either of the first two is 28/30. This follows in a similar fashion to the twentieth person.

The probability that no two people in the room share the same birthday (i.e., that they all have different birthdays) is:

30/30 x 29/30 x 28/30 x … x 11/30
(30 x 29 x 28 x … x 11)/(30 x 30 x 30 x … x 30)

30P20 / 30^20 ≈ 0.0002

Therefore, the probability that at least two of the people in the room do share the same birthday is:

1 - 0.0002 = 0.9998 = 99.98%

Answer: E
_________________

Scott Woodbury-Stewart

Founder and CEO

Scott@TargetTestPrep.com
TTP - Target Test Prep Logo
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

GMAT Club Bot
Re: Twenty people at a meeting were born during the month of Sep   [#permalink] 17 Jan 2019, 19:08
Display posts from previous: Sort by

Twenty people at a meeting were born during the month of Sep

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne