Last visit was: 18 Nov 2025, 19:22 It is currently 18 Nov 2025, 19:22
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
16
Kudos
Add Kudos
245
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,082
 [116]
44
Kudos
Add Kudos
72
Bookmarks
Bookmark this Post
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
35,331
 [10]
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,331
 [10]
8
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
General Discussion
User avatar
testprepDublin
Joined: 29 Jun 2011
Last visit: 05 Sep 2012
Posts: 8
Own Kudos:
17
 [3]
Location: Ireland
Concentration: (trading as) Test Prep Dublin
Posts: 8
Kudos: 17
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
What is the greatest common divisor of positive integers M and N ???
1)M is a prime number
2)2N=7M

If we look at statement 2 and plug in numbers we'll quickly see it's not sufficient.

Let M=2 then N = 7 GCD=1.
Let M=6 then N = 21 GCD=3.

S2 basically tells us that 2 is a factor of M and 7 is a factor of N. But we don't know if they have more shared factors or not.
Insufficient.

Does that make sense Akshaydiljit?
User avatar
Phoenix72
Joined: 29 Jun 2011
Last visit: 06 Oct 2013
Posts: 67
Own Kudos:
51
 [4]
Given Kudos: 29
GPA: 3.5
WE 1: Information Technology(Retail)
Posts: 67
Kudos: 51
 [4]
2
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
OA is C.

1)m is prime
Clearly insufficient.

2)2n=7m
can be written as n= 7m/2. n & m are integers.
Put m=1,2,3,4 .... therefore m has to be a multiple of 2.
Insufficient.

Combined-
m is prime(stat1) and m= multiple of 2(stat2)

Hence m=2 & n=7

GCF is 1.
User avatar
honchos
Joined: 17 Apr 2013
Last visit: 30 Aug 2021
Posts: 360
Own Kudos:
Given Kudos: 298
Status:Verbal Forum Moderator
Location: India
GMAT 1: 710 Q50 V36
GMAT 2: 750 Q51 V41
GMAT 3: 790 Q51 V49
GPA: 3.3
GMAT 3: 790 Q51 V49
Posts: 360
Kudos: 2,454
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
What is the greatest common divisor of positive integers m and n?

(1) m is a prime number --> if \(m=2=prime\) and \(n=1\) then \(GCD(m,n)=1\) but if \(m=2=prime\) and \(n=4\) then \(GCD(m,n)=2\). Two different answers, hence not sufficient.

(2) 2n=7m --> \(\frac{m}{n}=\frac{2}{7}\) --> \(m\) is a multiple of 2 and \(n\) is a multiple of 7, but this is still not sufficient: if \(m=2\) and \(n=7\) then \(GCD(m,n)=1\) (as both are primes) but if \(m=4\) and \(n=14\) then \(GCD(m,n)=2\) (basically as \(\frac{m}{n}=\frac{2x}{7x}\) then as 2 and 7 are primes then \(GCD(m, n)=x\)). Two different answers, hence not sufficient.

(1)+(2) Since from (1) \(m=prime\) and from (2) \(\frac{m}{n}=\frac{2}{7}\) then \(m=2=prime\) and \(n=7\), hence \(GCD(m,n)=1\). Sufficient.

Answer: C.

Greatest Common divisor and Highest common factor are same thing Bunuel?

Because n= 7m/2 (Taking both this is true only for m = 2) So Greatest common divisor is 2 not 1, Isn't it?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,082
Kudos
Add Kudos
Bookmarks
Bookmark this Post
honchos
Bunuel
What is the greatest common divisor of positive integers m and n?

(1) m is a prime number --> if \(m=2=prime\) and \(n=1\) then \(GCD(m,n)=1\) but if \(m=2=prime\) and \(n=4\) then \(GCD(m,n)=2\). Two different answers, hence not sufficient.

(2) 2n=7m --> \(\frac{m}{n}=\frac{2}{7}\) --> \(m\) is a multiple of 2 and \(n\) is a multiple of 7, but this is still not sufficient: if \(m=2\) and \(n=7\) then \(GCD(m,n)=1\) (as both are primes) but if \(m=4\) and \(n=14\) then \(GCD(m,n)=2\) (basically as \(\frac{m}{n}=\frac{2x}{7x}\) then as 2 and 7 are primes then \(GCD(m, n)=x\)). Two different answers, hence not sufficient.

(1)+(2) Since from (1) \(m=prime\) and from (2) \(\frac{m}{n}=\frac{2}{7}\) then \(m=2=prime\) and \(n=7\), hence \(GCD(m,n)=1\). Sufficient.

Answer: C.

Greatest Common divisor and Highest common factor are same thing Bunuel?

Because n= 7m/2 (Taking both this is true only for m = 2) So Greatest common divisor is 2 not 1, Isn't it?

Yes, GCD and GCF are the same thing.

But couldn't understand your second point: the greatest common divisor of 2 and 7 is 1. How can it be 2? Is 7 divisible by 2?
User avatar
honchos
Joined: 17 Apr 2013
Last visit: 30 Aug 2021
Posts: 360
Own Kudos:
Given Kudos: 298
Status:Verbal Forum Moderator
Location: India
GMAT 1: 710 Q50 V36
GMAT 2: 750 Q51 V41
GMAT 3: 790 Q51 V49
GPA: 3.3
GMAT 3: 790 Q51 V49
Posts: 360
Kudos: 2,454
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel,
Our m is coming as 2, so isn't 2 a GCD, Or may be I have misunderstood the solution?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,082
Kudos
Add Kudos
Bookmarks
Bookmark this Post
honchos
Bunuel,
Our m is coming as 2, so isn't 2 a GCD, Or may be I have misunderstood the solution?

The question asks: what is the greatest common divisor of positive integers m and n?

We got that m=2 and n=7. What is the greatest common divisor of 2 and 7? Is it 2? No, it's 1.
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 18 Nov 2025
Posts: 21,712
Own Kudos:
26,990
 [1]
Given Kudos: 300
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 21,712
Kudos: 26,990
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
lahoosaher
What is the greatest common divisor of positive integers m and n.

(1) m is a prime number
(2) 2n=7m

We need to determine the greatest common divisor, or the greatest common factor (GCF), of integers m and n.

Statement One Alone:

m is a prime number.

Since we don’t know anything about n, statement one is not sufficient to answer the question. We can eliminate answer choices A and D.

Statement Two Alone:

2n = 7m

We can manipulate the equation 2n = 7m:

n = 7m/2

n/m = 7/2

Even with the equation rewritten, we see that there are many options for m and n, and thus there are many different GCFs for m and n. For instance, if n = 7 and m = 2, then the GCF is 1. However, if n = 14 and m = 4, then the GCF is 2. Statement two alone is not sufficient to answer the question. We can eliminate answer choice B.

Statements One and Two Together:

Using statements one and two, we know that m is prime and that n/m = 7/2. Therefore, m must equal 2 and n must equal 7. When m is 2 and n is 7, the GCF is 1.

Answer: C
User avatar
renjana
Joined: 11 Jun 2015
Last visit: 06 Dec 2019
Posts: 70
Own Kudos:
Given Kudos: 86
Location: India
Concentration: Marketing, Leadership
Posts: 70
Kudos: 31
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
What is the greatest common divisor of positive integers m and n?

(1) m is a prime number --> if \(m=2=prime\) and \(n=1\) then \(GCD(m,n)=1\) but if \(m=2=prime\) and \(n=4\) then \(GCD(m,n)=2\). Two different answers, hence not sufficient.

(2) 2n=7m --> \(\frac{m}{n}=\frac{2}{7}\) --> \(m\) is a multiple of 2 and \(n\) is a multiple of 7, but this is still not sufficient: if \(m=2\) and \(n=7\) then \(GCD(m,n)=1\) (as both are primes) but if \(m=4\) and \(n=14\) then \(GCD(m,n)=2\) (basically as \(\frac{m}{n}=\frac{2x}{7x}\) then as 2 and 7 are primes then \(GCD(m, n)=x\)). Two different answers, hence not sufficient.

(1)+(2) Since from (1) \(m=prime\) and from (2) \(\frac{m}{n}=\frac{2}{7}\) then \(m=2=prime\) and \(n=7\), hence \(GCD(m,n)=1\). Sufficient.

Answer: C.


2) 2n=7m --> m/n=2/7

n=3.5m

GCF(m,3.5m)= m ? is this correct ? Its not sufficient because we dont have the value of M ?
User avatar
amanvermagmat
User avatar
Retired Moderator
Joined: 22 Aug 2013
Last visit: 28 Mar 2025
Posts: 1,148
Own Kudos:
Given Kudos: 480
Location: India
Posts: 1,148
Kudos: 2,854
Kudos
Add Kudos
Bookmarks
Bookmark this Post
renjana
Bunuel
What is the greatest common divisor of positive integers m and n?

(1) m is a prime number --> if \(m=2=prime\) and \(n=1\) then \(GCD(m,n)=1\) but if \(m=2=prime\) and \(n=4\) then \(GCD(m,n)=2\). Two different answers, hence not sufficient.

(2) 2n=7m --> \(\frac{m}{n}=\frac{2}{7}\) --> \(m\) is a multiple of 2 and \(n\) is a multiple of 7, but this is still not sufficient: if \(m=2\) and \(n=7\) then \(GCD(m,n)=1\) (as both are primes) but if \(m=4\) and \(n=14\) then \(GCD(m,n)=2\) (basically as \(\frac{m}{n}=\frac{2x}{7x}\) then as 2 and 7 are primes then \(GCD(m, n)=x\)). Two different answers, hence not sufficient.

(1)+(2) Since from (1) \(m=prime\) and from (2) \(\frac{m}{n}=\frac{2}{7}\) then \(m=2=prime\) and \(n=7\), hence \(GCD(m,n)=1\). Sufficient.

Answer: C.


2) 2n=7m --> m/n=2/7

n=3.5m

GCF(m,3.5m)= m ? is this correct ? Its not sufficient because we dont have the value of M ?


Hello

Yes, I think you have concluded properly. GCF of m & 3.5m will depend on the value of m. Eg, if m= 2, then 3.5m = 7, and their GCF will be 1.
However, if m= 4, then 3.5m= 14, and their GCF will be 2. So GCF can take multiple values depending on the value of m.
User avatar
jabhatta2
Joined: 15 Dec 2016
Last visit: 21 Apr 2023
Posts: 1,294
Own Kudos:
Given Kudos: 188
Posts: 1,294
Kudos: 317
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
What is the greatest common divisor of positive integers m and n?

(1) m is a prime number --> if \(m=2=prime\) and \(n=1\) then \(GCD(m,n)=1\) but if \(m=2=prime\) and \(n=4\) then \(GCD(m,n)=2\). Two different answers, hence not sufficient.

(2) 2n=7m --> \(\frac{m}{n}=\frac{2}{7}\) --> \(m\) is a multiple of 2 and \(n\) is a multiple of 7, but this is still not sufficient: if \(m=2\) and \(n=7\) then \(GCD(m,n)=1\) (as both are primes) but if \(m=4\) and \(n=14\) then \(GCD(m,n)=2\) (basically as \(\frac{m}{n}=\frac{2x}{7x}\) then as 2 and 7 are primes then \(GCD(m, n)=x\)). Two different answers, hence not sufficient.

(1)+(2) Since from (1) \(m=prime\) and from (2) \(\frac{m}{n}=\frac{2}{7}\) then \(m=2=prime\) and \(n=7\), hence \(GCD(m,n)=1\). Sufficient.

Answer: C.

Hi Bunuel - when you combine the statements, you mentioned that m = 2

How can you be sure that n = 7 always ? Why can't n = 14 for example (When m = 2)

Thank you
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,082
Kudos
Add Kudos
Bookmarks
Bookmark this Post
jabhatta2
Bunuel
What is the greatest common divisor of positive integers m and n?

(1) m is a prime number --> if \(m=2=prime\) and \(n=1\) then \(GCD(m,n)=1\) but if \(m=2=prime\) and \(n=4\) then \(GCD(m,n)=2\). Two different answers, hence not sufficient.

(2) 2n=7m --> \(\frac{m}{n}=\frac{2}{7}\) --> \(m\) is a multiple of 2 and \(n\) is a multiple of 7, but this is still not sufficient: if \(m=2\) and \(n=7\) then \(GCD(m,n)=1\) (as both are primes) but if \(m=4\) and \(n=14\) then \(GCD(m,n)=2\) (basically as \(\frac{m}{n}=\frac{2x}{7x}\) then as 2 and 7 are primes then \(GCD(m, n)=x\)). Two different answers, hence not sufficient.

(1)+(2) Since from (1) \(m=prime\) and from (2) \(\frac{m}{n}=\frac{2}{7}\) then \(m=2=prime\) and \(n=7\), hence \(GCD(m,n)=1\). Sufficient.

Answer: C.

Hi Bunuel - when you combine the statements, you mentioned that m = 2

How can you be sure that n = 7 always ? Why can't n = 14 for example (When m = 2)

Thank you

(2) says that 2n = 7m. If you substitute m = 2, there you'd get n = 7.
User avatar
avigutman
Joined: 17 Jul 2019
Last visit: 30 Sep 2025
Posts: 1,293
Own Kudos:
1,930
 [1]
Given Kudos: 66
Location: Canada
GMAT 1: 780 Q51 V45
GMAT 2: 780 Q50 V47
GMAT 3: 770 Q50 V45
Expert
Expert reply
GMAT 3: 770 Q50 V45
Posts: 1,293
Kudos: 1,930
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Video solution from Quant Reasoning starts at 13:15
Subscribe for more: https://www.youtube.com/QuantReasoning? ... irmation=1
User avatar
ManyataM
Joined: 27 Apr 2020
Last visit: 12 Jun 2021
Posts: 99
Own Kudos:
Given Kudos: 24
Posts: 99
Kudos: 25
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ScottTargetTestPrep
lahoosaher
What is the greatest common divisor of positive integers m and n.

(1) m is a prime number
(2) 2n=7m

We need to determine the greatest common divisor, or the greatest common factor (GCF), of integers m and n.

Statement One Alone:

m is a prime number.

Since we don’t know anything about n, statement one is not sufficient to answer the question. We can eliminate answer choices A and D.

Statement Two Alone:

2n = 7m

We can manipulate the equation 2n = 7m:

n = 7m/2

n/m = 7/2

Even with the equation rewritten, we see that there are many options for m and n, and thus there are many different GCFs for m and n. For instance, if n = 7 and m = 2, then the GCF is 1. However, if n = 14 and m = 4, then the GCF is 2. Statement two alone is not sufficient to answer the question. We can eliminate answer choice B.

Statements One and Two Together:

Using statements one and two, we know that m is prime and that n/m = 7/2. Therefore, m must equal 2 and n must equal 7. When m is 2 and n is 7, the GCF is 1.

Answer: C

Can you help me understand this more?

If using both statements , we plug in values in , 2n=7m .Then we will be arriving at different values? what to do in that case?
User avatar
avigutman
Joined: 17 Jul 2019
Last visit: 30 Sep 2025
Posts: 1,293
Own Kudos:
Given Kudos: 66
Location: Canada
GMAT 1: 780 Q51 V45
GMAT 2: 780 Q50 V47
GMAT 3: 770 Q50 V45
Expert
Expert reply
GMAT 3: 770 Q50 V45
Posts: 1,293
Kudos: 1,930
Kudos
Add Kudos
Bookmarks
Bookmark this Post
[/quote]

Can you help me understand this more?

If using both statements , we plug in values in , 2n=7m .Then we will be arriving at different values? what to do in that case?[/quote]

Could you clarify your question please? I also suggest watching my video solution above if you haven't already.
User avatar
vv65
Joined: 01 Mar 2015
Last visit: 10 Nov 2025
Posts: 534
Own Kudos:
395
 [1]
Given Kudos: 774
Location: India
GMAT 1: 740 Q47 V44
GMAT 1: 740 Q47 V44
Posts: 534
Kudos: 395
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ManyataM
ScottTargetTestPrep
lahoosaher
What is the greatest common divisor of positive integers m and n.

(1) m is a prime number
(2) 2n=7m

We need to determine the greatest common divisor, or the greatest common factor (GCF), of integers m and n.

Statement One Alone:

m is a prime number.

Since we don’t know anything about n, statement one is not sufficient to answer the question. We can eliminate answer choices A and D.

Statement Two Alone:

2n = 7m

We can manipulate the equation 2n = 7m:

n = 7m/2

n/m = 7/2

Even with the equation rewritten, we see that there are many options for m and n, and thus there are many different GCFs for m and n. For instance, if n = 7 and m = 2, then the GCF is 1. However, if n = 14 and m = 4, then the GCF is 2. Statement two alone is not sufficient to answer the question. We can eliminate answer choice B.

Statements One and Two Together:

Using statements one and two, we know that m is prime and that n/m = 7/2. Therefore, m must equal 2 and n must equal 7. When m is 2 and n is 7, the GCF is 1.

Answer: C

Can you help me understand this more?

If using both statements , we plug in values in , 2n=7m .Then we will be arriving at different values? what to do in that case?

2n=7m tells us that 7m is Even
For 7m to be even, m has to be Even
We know that m is Prime : 2 is the only prime even number

So m=2
And n has to be 7

Posted from my mobile device
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 18 Nov 2025
Posts: 21,712
Own Kudos:
Given Kudos: 300
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 21,712
Kudos: 26,990
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ManyataM
ScottTargetTestPrep
lahoosaher
What is the greatest common divisor of positive integers m and n.

(1) m is a prime number
(2) 2n=7m

We need to determine the greatest common divisor, or the greatest common factor (GCF), of integers m and n.

Statement One Alone:

m is a prime number.

Since we don’t know anything about n, statement one is not sufficient to answer the question. We can eliminate answer choices A and D.

Statement Two Alone:

2n = 7m

We can manipulate the equation 2n = 7m:

n = 7m/2

n/m = 7/2

Even with the equation rewritten, we see that there are many options for m and n, and thus there are many different GCFs for m and n. For instance, if n = 7 and m = 2, then the GCF is 1. However, if n = 14 and m = 4, then the GCF is 2. Statement two alone is not sufficient to answer the question. We can eliminate answer choice B.

Statements One and Two Together:

Using statements one and two, we know that m is prime and that n/m = 7/2. Therefore, m must equal 2 and n must equal 7. When m is 2 and n is 7, the GCF is 1.

Answer: C

Can you help me understand this more?

If using both statements , we plug in values in , 2n=7m .Then we will be arriving at different values? what to do in that case?

Solution:

If there are no restrictions on n and m other than that both of them are positive (which is the case when we assume only statement two), then the equation 2n = 7m indeed has more than one solution (such as n = 21, m = 6 or n = 28, m = 8 or n = 35, m = 10). However, when we use both statements, we are told that m is a prime number. Furthermore, m must be even since 7m equals an even number (2n is even regardless of the value of n). Since m is even and prime, the only possible value for m is 2. Thus, the only possible value of n is 7.
User avatar
dylanl1218
User avatar
Current Student
Joined: 20 Oct 2018
Last visit: 07 Jun 2022
Posts: 40
Own Kudos:
Given Kudos: 246
Location: United States
GPA: 3.5
Posts: 40
Kudos: 10
Kudos
Add Kudos
Bookmarks
Bookmark this Post
lahoosaher
What is the greatest common divisor of positive integers m and n ?

(1) m is a prime number
(2) 2n = 7m

Statement 1:

Let's consider two scenarios:
(1) M = 2 and N = 3, then GCF = 1 (note: GCF of any two consecutive integers is equal to 1.)
(2) M = 2 and N = 4, then GCF = 2

So we've got two different answers to the GCF so not sufficient.

Statement 2:
If 2n=7m then that means that N = (7M)/2. Now remember that the stem provides us with the information that M and N are both integers. So the quotient of (7M)/2 MUST be an integer, and the only way that (7M)/2 can be an integer is if M is EVEN. Okay but again, this statement alone isn't sufficient, but lets just test two scenarios to confirm:

So now we need to find the GCF of (7M)/2 and M because N = (7M/2).
(1) M = 2 then GCF = 1
(2) M = 4 then GCF = 2

(1) and (2) together:
Well since M must be both a prime number, AND an even number then the only number that M can be is 2. So the GCF of (7M)/2 and M is gcf(7, 2) = 1.
 1   2   
Moderators:
Math Expert
105355 posts
496 posts