GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

It is currently 20 Jan 2020, 01:41

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

What is the tens digit of 6^17?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Manager
Manager
avatar
Joined: 19 Sep 2010
Posts: 112
tens digit  [#permalink]

Show Tags

New post 17 Oct 2010, 11:29
45
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

49% (02:05) correct 51% (02:07) wrong based on 1232 sessions

HideShow timer Statistics

What is the tens digit of 6^17?

(A) 1
(B) 3
(C) 5
(D) 7
(E) 9
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 60490
Re: Arithmetic  [#permalink]

Show Tags

New post 04 Feb 2012, 05:30
11
27
Smita04 wrote:
What is the tens digit of 6^17?
(A) 1
(B) 3
(C) 5
(D) 7
(E) 9


There are several ways to deal with this problems some easier some harder, but almost all of them are based on the pattern recognition.

The tens digit of 6 in integer power starting from 2 (6^1 has no tens digit) repeats in pattern of 5: {3, 1, 9, 7, 5}:
The tens digit of 6^2=36 is 3;
The tens digit of 6^3=216 is 1;
The tens digit of 6^4=...96 is 9 (how to calculate: multiply 16 by 6 to get ...96 as the last two digits);
The tens digit of 6^5=...76 is 7 (how to calculate: multiply 96 by 6 to get ...76 as the last two digit);
The tens digit of 6^6=...56 is 5 (how to calculate: multiply 76 by 6 to get ...56 as the last two digits);
The tens digit of 6^7=...36 is 3 again (how to calculate: multiply 56 by 6 to get ...36 as the last two digits).

Hence, 6^2, 6^7, 6^12, 6^17, 6^22, ... will have the same tens digit of 3.

Answer: B.
_________________
Most Helpful Community Reply
Retired Moderator
User avatar
Joined: 02 Sep 2010
Posts: 715
Location: London
GMAT ToolKit User Reviews Badge
Re: tens digit  [#permalink]

Show Tags

New post 17 Oct 2010, 15:36
6
3
Raths wrote:
what is the ten's digit of 6^17

1. 1
2. 3
3. 5
4. 7
5. 9


Just like cyclicity of the last digit, we can observe the cyclicity of the last 2 digits in this case : (which is possible because there is no cyclicity in the unit's digit, it is always 6)
6^2 = 36
6^3 = 16
6^4 = 96
6^5 = 76
6^6 = 56
6^7 = 36
.. and then it repeats

So for 6^17, it will have the same tens digit as 6^12, 6^7, 6^2 ... or 3

Answer is (b)
_________________
General Discussion
Manager
Manager
avatar
Joined: 13 Aug 2010
Posts: 114
Re: tens digit  [#permalink]

Show Tags

New post 17 Oct 2010, 20:41
shrouded can you please explain it a bit more, didnt get why 6^17, it will have the same tens digit as 6^12, 6^7, 6^2 .. thank you in advance
Retired Moderator
User avatar
Joined: 02 Sep 2010
Posts: 715
Location: London
GMAT ToolKit User Reviews Badge
Re: tens digit  [#permalink]

Show Tags

New post 18 Oct 2010, 00:42
So the logic here is simple. Consider the number 6^x, lets say that you know the tens digit of this number, can you find out the tens digit of 6^(x+1) ?

What we know is that the last digit of 6^x will always be 6 (which is easy enough to see). Now the fact of the matter is that the ten's digit of 6^(x+1) is only dependent on the tens digit of 6^x.

Because Ten's digit of 6^(x+1) = 6*(Ten's digit of 6^x) + 3 (carried over during the multiplication of the units digits 6 with the new 6).

Like 6^3 = 216
So 6^4, units digit is 6 and ten's digit is 6*1+3 = 9

Hence, as soon as the ten's digit of 6^x becomes the same as the ten's digit of 6^y, the pattern of tens digit will start to repeat itself

6^2 = 36
6^3 = 16
6^4 = 96
6^5 = 76
6^6 = 56
6^7 = 36

The pattern here is 3,1,9,7,5,3,1,9,7,5,3,1,9,7,5,3,1,9,7,5,3.....
The cyclicity of the pattern is five, so every 5th element in this series will be the same hence 2nd,7th,12th,17th have to be the same
_________________
Director
Director
avatar
Joined: 23 Apr 2010
Posts: 502
Re: What is the tens digit of 6^17?  [#permalink]

Show Tags

New post 10 Feb 2012, 03:14
2
2
Bunuel,can you calculate it with modulo as below:

1) periodicity of the ten's digit is 5
2) 17 mod 5 = 2
3) 6^17 will have the same digit as 6^2
Retired Moderator
avatar
Status: Enjoying the GMAT journey....
Joined: 26 Aug 2011
Posts: 538
Location: India
GMAT 1: 620 Q49 V24
GMAT ToolKit User
Re: What is the tens digit of 6^17?  [#permalink]

Show Tags

New post 10 Feb 2012, 05:10
3
well, this question demands calculation to see a pattern of tens digits
keep calculating till it's confirmed that u have hit a pattern.
6^1 = 6
6^2 = 36
6^3 = 216
now don't multiply 216 by 6, rather we are interested in only first two digits to know the outcome so
6^4 = 96 ( 16 x 6)
6^5 = 576 ( 96 x 6)
6^ 6 = 456 ( 76 x 6)
7^ 6 =336 ( 56 x 6)
so now we have the pattern in tens digit i.e.
3 in (6^2),
1 in (6^3),
9 in (6^4),
7 in (6^5),
5 in (6^6),
3 in (6^7),

so the tens digit is 3 for the 2,7,12 and 17 times..
IMO B
_________________
Fire the final bullet only when you are constantly hitting the Bull's eye, till then KEEP PRACTICING.

A WAY TO INCREASE FROM QUANT 35-40 TO 47 : http://gmatclub.com/forum/a-way-to-increase-from-q35-40-to-q-138750.html

Q 47/48 To Q 50 + http://gmatclub.com/forum/the-final-climb-quest-for-q-50-from-q47-129441.html#p1064367

Three good RC strategies http://gmatclub.com/forum/three-different-strategies-for-attacking-rc-127287.html
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 60490
Re: What is the tens digit of 6^17?  [#permalink]

Show Tags

New post 10 Feb 2012, 07:16
Senior Manager
Senior Manager
User avatar
Joined: 13 Aug 2012
Posts: 394
Concentration: Marketing, Finance
GPA: 3.23
GMAT ToolKit User
Re: What is the tens digit of 6^17?  [#permalink]

Show Tags

New post Updated on: 13 Jan 2013, 23:11
1
Smita04 wrote:
What is the tens digit of 6^17?
(A) 1
(B) 3
(C) 5
(D) 7
(E) 9


\(6^2 = 36\)
\(6^3 = 36 * 6 = n16\)
\(6^5 = 6^2 * 6^3 = 36 * n16 = n76\)

Note that when you multiply, you don't have to finish it all the way, knowing the tens digit should suffice....
Also, using the table we have we can calculate \(6^{10}\) and \(6^{17}\). We work with what we already have above/

\(6^10 = 6^5 * 6^5 = n76 * n76 = n76\)
\(6^7 = 6^5 * 6^2 = n36 * n76 = n36\)
\(6^{17} = 6^{10} * 6^{7} = n76 * n36\) (We already know what happens to n76 * n36 as calculated above...) \(=n36\)

Answer: B

Originally posted by mbaiseasy on 21 Dec 2012, 07:38.
Last edited by mbaiseasy on 13 Jan 2013, 23:11, edited 4 times in total.
Manager
Manager
avatar
Joined: 04 Jan 2013
Posts: 68
Re: What is the tens digit of 6^17?  [#permalink]

Show Tags

New post 13 Jan 2013, 13:15
bunuel would you please post me a link on the topic of exponents and powers from gmat math book if it has been finished..i want to learn and master way u hav solved the problem

Posted from my mobile device
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 60490
Re: What is the tens digit of 6^17?  [#permalink]

Show Tags

New post 14 Jan 2013, 01:44
1
1
chiccufrazer1 wrote:
bunuel would you please post me a link on the topic of exponents and powers from gmat math book if it has been finished..i want to learn and master way u hav solved the problem

Posted from my mobile device


For more on number theory and exponents check: http://gmatclub.com/forum/math-number-theory-88376.html

DS questions on exponents: http://gmatclub.com/forum/search.php?se ... &tag_id=39
PS questions on exponents: http://gmatclub.com/forum/search.php?se ... &tag_id=60

Tough and tricky DS exponents and roots questions with detailed solutions: http://gmatclub.com/forum/tough-and-tri ... 25967.html
Tough and tricky PS exponents and roots questions with detailed solutions: http://gmatclub.com/forum/tough-and-tri ... 25956.html

Hope it helps.
_________________
Manager
Manager
avatar
Joined: 04 Jan 2013
Posts: 68
Re: Arithmetic  [#permalink]

Show Tags

New post 17 Jan 2013, 10:59
Bunuel wrote:
Smita04 wrote:
What is the tens digit of 6^17?
(A) 1
(B) 3
(C) 5
(D) 7
(E) 9


There are several ways to deal with this problems some easier some harder, but almost all of them are based on the pattern recognition.

The tens digit of 6 in integer power starting from 2 (6^1 has no tens digit) repeats in pattern of 5: {3, 1, 9, 7, 5}:
The tens digit of 6^2=36 is 3;
The tens digit of 6^3=216 is 1;
The tens digit of 6^4=...96 is 9 (how to calculate: multiply 16 by 6 to get ...96 as the last two digits);
The tens digit of 6^5=...76 is 7 (how to calculate: multiply 96 by 6 to get ...76 as the last two digit);
The tens digit of 6^6=...56 is 5 (how to calculate: multiply 76 by 6 to get ...56 as the last two digits);
The tens digit of 6^7=...36 is 3 again (how to calculate: multiply 56 by 6 to get ...36 as the last two digits).

Hence, 6^2, 6^7, 6^12, 6^17, 6^22, ... will have the same tens digit of 3.

Answer: B.


i have noticed that every number has 6 as the unit digit..is it the same for other numbers that they repeat each of the unit's digit throughout when it is being raised to powers of consecutive integers

Posted from my mobile device
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 60490
Re: Arithmetic  [#permalink]

Show Tags

New post 18 Jan 2013, 04:28
chiccufrazer1 wrote:
Bunuel wrote:
Smita04 wrote:
What is the tens digit of 6^17?
(A) 1
(B) 3
(C) 5
(D) 7
(E) 9


There are several ways to deal with this problems some easier some harder, but almost all of them are based on the pattern recognition.

The tens digit of 6 in integer power starting from 2 (6^1 has no tens digit) repeats in pattern of 5: {3, 1, 9, 7, 5}:
The tens digit of 6^2=36 is 3;
The tens digit of 6^3=216 is 1;
The tens digit of 6^4=...96 is 9 (how to calculate: multiply 16 by 6 to get ...96 as the last two digits);
The tens digit of 6^5=...76 is 7 (how to calculate: multiply 96 by 6 to get ...76 as the last two digit);
The tens digit of 6^6=...56 is 5 (how to calculate: multiply 76 by 6 to get ...56 as the last two digits);
The tens digit of 6^7=...36 is 3 again (how to calculate: multiply 56 by 6 to get ...36 as the last two digits).

Hence, 6^2, 6^7, 6^12, 6^17, 6^22, ... will have the same tens digit of 3.

Answer: B.


i have noticed that every number has 6 as the unit digit..is it the same for other numbers that they repeat each of the unit's digit throughout when it is being raised to powers of consecutive integers

Posted from my mobile device


No. You could test that very easily yourself. Is the units digit of 2^2 equal 2? No, its 4.

• Integer ending with 0, 1, 5 or 6, in the integer power k>0, has the same last digit as the base.
• Integers ending with 2, 3, 7 and 8 have a cyclicity of 4.

For more check here: http://gmatclub.com/forum/math-number-theory-88376.html

Hope it helps.
_________________
Intern
Intern
avatar
S
Joined: 14 Oct 2016
Posts: 35
Location: India
WE: Sales (Energy and Utilities)
Re: What is the tens digit of 6^17?  [#permalink]

Show Tags

New post 13 Sep 2017, 23:46
2
If Question like this appears in GMAT. and we are asked to find the last two digits this could be used

Rule Express Even numbers in the form ( 2^10) ^even which will have last two digits as 76 or ( 2^10) ^odd where last two digits is 24


For Odd numbers Express them 3^4k, 7 ^ 4k, 9 ^2k


Question was 6^17

So (2^ 17 ) ( 3^17)

= {(2^10)^1 * 2^7} { (3^4)^3 * 3^5}

So last two digits (2^10)^1= 24
So last two digits 2^7= 28


Last two digits of this number (3^4)^3 = (81)^3= last two digits are 41 (1 will be the last digit and second last digit will be 4 that i got by multiplying 8 *3
last two digits of this number 3^5 = 43


So (24 * 28) * (41* 43)

Don't do complete multiplication just do it till you get two digits

72 * 63= 36

So digit in tenth place is 36
_________________
Abhimanyu
Veritas Prep GMAT Instructor
User avatar
V
Joined: 16 Oct 2010
Posts: 9989
Location: Pune, India
Re: What is the tens digit of 6^17?  [#permalink]

Show Tags

New post 15 Sep 2017, 03:58
Raths wrote:
What is the tens digit of 6^17?

(A) 1
(B) 3
(C) 5
(D) 7
(E) 9


Here is a post discussing the use of pattern recognition for last two digits:
https://www.veritasprep.com/blog/2014/1 ... ns-part-i/
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Intern
Intern
avatar
Joined: 21 Sep 2017
Posts: 1
Re: What is the tens digit of 6^17?  [#permalink]

Show Tags

New post 21 Sep 2017, 09:07
1
6^17 = (2×3)^17 = 2^17 × 3^17
Now, 2^17 = 2^10 × 2^7 = 24 × 28 = 72
And 3^17 = 3^16 × 3 = 81^4 ×3 = 21 × 3 = 63
Lasr two digit = 72 × 63 = 36
Tens digit = 3

Posted from my mobile device
Director
Director
avatar
G
Joined: 09 Mar 2018
Posts: 991
Location: India
Re: What is the tens digit of 6^17?  [#permalink]

Show Tags

New post 26 Jan 2019, 21:05
Raths wrote:
What is the tens digit of 6^17?

(A) 1
(B) 3
(C) 5
(D) 7
(E) 9


IF you are able to identify the pattern you should be good, I find this approach i fool proof one

6
36
216
1296
7776
46656
xxxx36

Now after that point you need not solve, as tens digit will be same after this, After every 5th term the series will start again

Remove the first term 6 from the series, you will be left with 16 terms, making, 3 as the correct answer

B
_________________
If you notice any discrepancy in my reasoning, please let me know. Lets improve together.

Quote which i can relate to.
Many of life's failures happen with people who do not realize how close they were to success when they gave up.
Manager
Manager
avatar
B
Joined: 14 Nov 2018
Posts: 80
Location: United Arab Emirates
GMAT 1: 590 Q42 V30
GPA: 2.6
Re: What is the tens digit of 6^17?  [#permalink]

Show Tags

New post 21 Dec 2019, 06:59
Bunuel Does the same rule of cyclicity apply of 5 apply for the tens digit of other numbers as well? This is the first time I have seen a question on cyclicity of the tens digits.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 60490
Re: What is the tens digit of 6^17?  [#permalink]

Show Tags

New post 22 Dec 2019, 03:07
GMAT Club Bot
Re: What is the tens digit of 6^17?   [#permalink] 22 Dec 2019, 03:07
Display posts from previous: Sort by

What is the tens digit of 6^17?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne