samark wrote:

\(\sqrt{3\sqrt{80}+\frac{3}{9+4\sqrt{5}}} =\)

A) \(2\sqrt{3\sqrt{5}}\)

B) \(3\)

C) \(3\sqrt{3}\)

D) \(9+4\sqrt{5}\)

E) \(3+2\sqrt{5}\)

\(?\,\,\,:\,\,\,{\rm{expression}}\)

\(\sqrt {80} \,\, = \,\,\underleftrightarrow {\sqrt {8 \cdot 10} = \sqrt {{2^4} \cdot 5} } = 4\sqrt 5 \,\)

\(\frac{1}{{9 + 4\sqrt 5 }} = \frac{1}{{9 + 4\sqrt 5 }} \cdot \frac{{9 - 4\sqrt 5 }}{{9 - 4\sqrt 5 }} = \frac{{9 - 4\sqrt 5 }}{{81 - 16 \cdot 5}} = 9 - 4\sqrt 5\)

\(3\left( {\sqrt {80} + \frac{1}{{9 + 4\sqrt 5 }}} \right)\,\, = \,\,3\,\left( 9 \right)\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,\,?\,\, = \,\,\sqrt {3 \cdot 9} = 3\sqrt 3\)

This solution follows the notations and rationale taught in the GMATH method.

Regards,

Fabio.

_________________

Fabio Skilnik :: https://GMATH.net (Math for the GMAT) or GMATH.com.br (Portuguese version)

Course release PROMO : finish our test drive till 30/Nov with (at least) 50 correct answers out of 92 (12-questions Mock included) to gain a 50% discount!