Last visit was: 18 Nov 2025, 17:28 It is currently 18 Nov 2025, 17:28
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
dheeraj24
Joined: 01 Sep 2013
Last visit: 26 Jul 2015
Posts: 85
Own Kudos:
Given Kudos: 74
Status:suffer now and live forever as a champion!!!
Location: India
Dheeraj: Madaraboina
GPA: 3.5
WE:Information Technology (Computer Software)
Posts: 85
Kudos: 347
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,265
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,265
Kudos: 76,982
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
dheeraj24
Joined: 01 Sep 2013
Last visit: 26 Jul 2015
Posts: 85
Own Kudos:
Given Kudos: 74
Status:suffer now and live forever as a champion!!!
Location: India
Dheeraj: Madaraboina
GPA: 3.5
WE:Information Technology (Computer Software)
Posts: 85
Kudos: 347
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,265
Own Kudos:
76,982
 [1]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,265
Kudos: 76,982
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
dheeraj24
Yeah karishma,

I totally agree with your explanation, but the point is, why couldn't we draw the slant lines for the points (2,0), (-2,0), (0,2) and (0,-2) instead of horizontal lines and consider the length of diagonal rather than length of side for the original question (|x+y| + |x-y| = 4).

Thanks in advance.


Because you are asked the area of the region bounded by |x+y| + |x-y| = 4.
This equation gives you ONLY horizontal/vertical lines passing through points (2,0), (-2,0), (0,2) and (0,-2) such as x = 2, y = 2, x = -2, y = -2.

Note that x = 2 is the equation of a line (it is not a coordinate) which passes through point (2, 0) and is parallel to the y axis. Similarly, y = 2 is the equation of a line which is parallel to x axis and passes through the point (0, 2) and so on. I think you are taking x = 2 as a coordinate but that is not the case. A coordinate has a value for y too. x =2 is the equation of a line. It implies that x coordinate is always 2 and y can be anything. So all points lying on a line passing through x = 2 and parallel to y axis satisfy this criteria.
User avatar
PathFinder007
Joined: 10 Mar 2014
Last visit: 21 Oct 2018
Posts: 129
Own Kudos:
Given Kudos: 13
Posts: 129
Kudos: 733
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Karishma,

I am still not clear :(

in question |x/2| + |y/2| = 5 we are getting following cordinates.

x=10
x=-10
y=10
y=-10

and in question |x+y| + |x-y| = 4. we are having following cordinates
x=2
x=-2
y=2
y=-2

why we are drawing graph differently?

Thanks
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
778,072
 [1]
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,072
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
PathFinder007
Hi Karishma,

I am still not clear :(

in question |x/2| + |y/2| = 5 we are getting following cordinates.

x=10
x=-10
y=10
y=-10


and in question |x+y| + |x-y| = 4. we are having following cordinates
x=2
x=-2
y=2
y=-2

why we are drawing graph differently?

Thanks

For \(|x+y| + |x-y| = 4\) the equations are:

\(x = 2\);
\(y = 2\);
\(y = -2\);
\(x = -2\).

For \(|\frac{x}{2}| + |\frac{y}{2}| = 5\) the equations are:

\(y=-10-x\);
\(y=10+x\);
\(y=10-x\);
\(y=x-10\).

You might helpful to re-read the thread.
User avatar
jayanthjanardhan
Joined: 29 May 2013
Last visit: 17 Aug 2017
Posts: 83
Own Kudos:
Given Kudos: 42
Location: India
Concentration: Technology, Marketing
WE:Information Technology (Consulting)
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
srini123
Thanks Bunuel, I used similar method for a similar question and I got wrong answer
the question was

what is the area bounded by graph\(|x/2| + |y/2| = 5\)?

I got hunderd since
x=10
x=-10
y=10
y=-10


isnt the area 400 ? the answer given was 200, please explain

I think this one is different.

\(|\frac{x}{2}| + |\frac{y}{2}| = 5\)

After solving you'll get equation of four lines:

\(y=-10-x\)
\(y=10+x\)
\(y=10-x\)
\(y=x-10\)

These four lines will also make a square, BUT in this case the diagonal will be 20 so the \(Area=\frac{20*20}{2}=200\). Or the \(Side= \sqrt{200}\), area=200.

If you draw these four lines you'll see that the figure (square) which is bounded by them is turned by 90 degrees and has a center at the origin. So the side will not be 20.

Also you made a mistake in solving equation. The red part is not correct. You should have the equations written above.

In our original question when we were solving the equation |x+y| + |x-y| = 4 each time x or y were cancelling out so we get equations of a type x=some value twice and y=some value twice. And these equations give the lines which are parallel to the Y or X axis respectively so the figure bounded by them is a "horizontal" square (in your question it's "diagonal" square).


Hope it's clear.

Hi bunnel,

How did u rhombus for this one and a square for the other one?...I got the limits for both the questions, but could not figure out they turn out to be a square and rhombus!...
User avatar
GMATinsight
User avatar
Major Poster
Joined: 08 Jul 2010
Last visit: 18 Nov 2025
Posts: 6,835
Own Kudos:
16,349
 [1]
Given Kudos: 128
Status:GMAT/GRE Tutor l Admission Consultant l On-Demand Course creator
Location: India
GMAT: QUANT+DI EXPERT
Schools: IIM (A) ISB '24
GMAT 1: 750 Q51 V41
WE:Education (Education)
Products:
Expert
Expert reply
Schools: IIM (A) ISB '24
GMAT 1: 750 Q51 V41
Posts: 6,835
Kudos: 16,349
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
jayanthjanardhan
Bunuel
srini123
Thanks Bunuel, I used similar method for a similar question and I got wrong answer
the question was

what is the area bounded by graph\(|x/2| + |y/2| = 5\)?

I got hunderd since
x=10
x=-10
y=10
y=-10


isnt the area 400 ? the answer given was 200, please explain

I think this one is different.

\(|\frac{x}{2}| + |\frac{y}{2}| = 5\)

After solving you'll get equation of four lines:

\(y=-10-x\)
\(y=10+x\)
\(y=10-x\)
\(y=x-10\)

These four lines will also make a square, BUT in this case the diagonal will be 20 so the \(Area=\frac{20*20}{2}=200\). Or the \(Side= \sqrt{200}\), area=200.

If you draw these four lines you'll see that the figure (square) which is bounded by them is turned by 90 degrees and has a center at the origin. So the side will not be 20.

Also you made a mistake in solving equation. The red part is not correct. You should have the equations written above.

In our original question when we were solving the equation |x+y| + |x-y| = 4 each time x or y were cancelling out so we get equations of a type x=some value twice and y=some value twice. And these equations give the lines which are parallel to the Y or X axis respectively so the figure bounded by them is a "horizontal" square (in your question it's "diagonal" square).


Hope it's clear.

Hi bunnel,

How did u rhombus for this one and a square for the other one?...I got the limits for both the questions, but could not figure out they turn out to be a square and rhombus!...

Even that is a square but never forget that A Square is a specific type of Rhombus only

I hope, You can understand that the Product of the slopes of the adjacent sides is -1 in that figure which proves the angle between the adjacent sides as 90 degree

a Square is a "Rhombus with all angles 90 degrees". So calling it a Rhombus won't be wrong either but you are right about the figure being a Square.
User avatar
MalachiKeti
Joined: 01 Sep 2024
Last visit: 27 Jan 2025
Posts: 131
Own Kudos:
Given Kudos: 99
Posts: 131
Kudos: 71
Kudos
Add Kudos
Bookmarks
Bookmark this Post
`Hey I did something rather stupid and I need help in identifying what is exact mistake

|x+y|+|x-y| = 4
Why cant we do |x+y|=A and |x-y|=B

So now a few values of A & B could be,
A,B =
0,4
4,0
2,2

Using First
A=0 and B=4
|x+y|=0 Hence (x,y) could be (0,0)
|x-y|=4 Hence (x,y) could be (0,4),(4,0)
And so on.

Bunuel just help me understand what am I doing wrong here even though I agree (4,0) and (0,4) cant be the solution. Just need to know so I dont make this mistake again
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,072
Kudos
Add Kudos
Bookmarks
Bookmark this Post
MalachiKeti
`Hey I did something rather stupid and I need help in identifying what is exact mistake

|x+y|+|x-y| = 4
Why cant we do |x+y|=A and |x-y|=B

So now a few values of A & B could be,
A,B =
0,4
4,0
2,2

Using First
A=0 and B=4
|x+y|=0 Hence (x,y) could be (0,0)
|x-y|=4 Hence (x,y) could be (0,4),(4,0)
And so on.

Bunuel just help me understand what am I doing wrong here even though I agree (4,0) and (0,4) cant be the solution. Just need to know so I dont make this mistake again

­I've tried explaining this question in several posts on the previous two pages. However, if it's still unclear, you can ignore this question since geometry is no longer part of the GMAT syllabus.
User avatar
adipisci
Joined: 01 Jul 2025
Last visit: 10 Sep 2025
Posts: 11
Own Kudos:
Given Kudos: 33
Posts: 11
Kudos: 4
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Brunel,

I think it still looks the same with the |x/2|+|y/2|=5 problem.

Solving this we can get

x=10
y=10
x=-10
y=-10

Just like this problem.

I get that you used two different methods to solve these two. But based on what one will understand which method to follow?
What is the actual difference between these two questions?

Bunuel
srini123
Thanks Bunuel, I used similar method for a similar question and I got wrong answer
the question was

what is the area bounded by graph\(|x/2| + |y/2| = 5\)?

I got hunderd since
x=10
x=-10
y=10
y=-10


isnt the area 400 ? the answer given was 200, please explain

I think this one is different.

\(|\frac{x}{2}| + |\frac{y}{2}| = 5\)

After solving you'll get equation of four lines:

\(y=-10-x\)
\(y=10+x\)
\(y=10-x\)
\(y=x-10\)

These four lines will also make a square, BUT in this case the diagonal will be 20 so the \(Area=\frac{20*20}{2}=200\). Or the \(Side= \sqrt{200}\), area=200.

If you draw these four lines you'll see that the figure (square) which is bounded by them is turned by 90 degrees and has a center at the origin. So the side will not be 20.

Also you made a mistake in solving equation. The red part is not correct. You should have the equations written above.

In our original question when we were solving the equation |x+y| + |x-y| = 4 each time x or y were cancelling out so we get equations of a type x=some value twice and y=some value twice. And these equations give the lines which are parallel to the Y or X axis respectively so the figure bounded by them is a "horizontal" square (in your question it's "diagonal" square).


Hope it's clear.
User avatar
adipisci
Joined: 01 Jul 2025
Last visit: 10 Sep 2025
Posts: 11
Own Kudos:
Given Kudos: 33
Posts: 11
Kudos: 4
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Brunel,

Didn't understand the formula with area and diagonal wen solving the |x/2| + |y/2| = 5 problem. Is area of a rectangle is equal to square of the diagonal divided by 2?

Bunuel
srini123
Thanks Bunuel, I used similar method for a similar question and I got wrong answer
the question was

what is the area bounded by graph\(|x/2| + |y/2| = 5\)?

I got hunderd since
x=10
x=-10
y=10
y=-10


isnt the area 400 ? the answer given was 200, please explain

I think this one is different.

\(|\frac{x}{2}| + |\frac{y}{2}| = 5\)

After solving you'll get equation of four lines:

\(y=-10-x\)
\(y=10+x\)
\(y=10-x\)
\(y=x-10\)

These four lines will also make a square, BUT in this case the diagonal will be 20 so the \(Area=\frac{20*20}{2}=200\). Or the \(Side= \sqrt{200}\), area=200.

If you draw these four lines you'll see that the figure (square) which is bounded by them is turned by 90 degrees and has a center at the origin. So the side will not be 20.

Also you made a mistake in solving equation. The red part is not correct. You should have the equations written above.

In our original question when we were solving the equation |x+y| + |x-y| = 4 each time x or y were cancelling out so we get equations of a type x=some value twice and y=some value twice. And these equations give the lines which are parallel to the Y or X axis respectively so the figure bounded by them is a "horizontal" square (in your question it's "diagonal" square).


Hope it's clear.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,072
Kudos
Add Kudos
Bookmarks
Bookmark this Post
­I've tried explaining this question in several posts on the previous two pages. However, if it's still unclear, you can ignore this question since geometry is no longer part of the GMAT syllabus.
   1   2 
Moderators:
Math Expert
105355 posts
Tuck School Moderator
805 posts