Author 
Message 
TAGS:

Hide Tags

Manager
Joined: 21 Jul 2009
Posts: 242
Location: New York, NY

Is x + x 1 = 1? [#permalink]
Show Tags
23 Oct 2009, 08:55
7
This post received KUDOS
28
This post was BOOKMARKED
Question Stats:
66% (01:01) correct 34% (01:06) wrong based on 1096 sessions
HideShow timer Statistics
Is x + x 1 = 1? (1) x ≥ 0 (2) x ≤ 1
Official Answer and Stats are available only to registered users. Register/ Login.



Senior Manager
Joined: 16 Apr 2009
Posts: 315

Re: Absolute values DS questions... [#permalink]
Show Tags
23 Oct 2009, 20:26
1
This post received KUDOS
1
This post was BOOKMARKED
I will go with B As the absolute value can not be negative , so for x <= 1 x can be in the range of 0 to 1 ( inclusive) putting values : 0 + 0 1 = 1 0.65 + 0.65 1 = 0.65 + 0.35 = 1 I intially thought C , but realised my mistake
_________________
Always tag your question



Math Expert
Joined: 02 Sep 2009
Posts: 43831

Re: Absolute values DS questions... [#permalink]
Show Tags
23 Oct 2009, 21:31
9
This post received KUDOS
Expert's post
10
This post was BOOKMARKED
This one is very tricky! Is x + x 1 = 1? (1) x ≥ 0 (2) x ≤ 1 Q is \(x + x 1 = 1\). Let's check when this equation holds true. We should consider three ranges (as there are two check points \(x=0\) and \(x=1\)): A. \(x<0\) > \(xx+1=1\) > \(x=0\), but this solution is not valid as we are checking the range \(x<0\); B. \(0\leq{x}\leq{1}\) >\(xx+1=1\) > \(1=1\), which is true. That means that for ANY value from the range \(0\leq{x}\leq{1}\), equation \(x + x 1 = 1\) holds true. C. \(x>1\) > \(x+x1=1\) > \(x=1\), but this solution is not valid as we are checking the range \(x>1\). So we get that equation \(x + x 1 = 1\) holds true ONLY in the range \(0\leq{x}\leq{1}\). Statements: (1) \(x\geq{0}\). Not sufficient, as \(x\) must be also \(\leq{1}\); (2) \(x\leq{1}\). Not sufficient, as \(x\) must be also \(\geq{0}\); (1)+(2) \(0\leq{x}\leq{1}\), exactly the range we needed. Sufficient. Answer: C.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Director
Joined: 01 Apr 2008
Posts: 872
Name: Ronak Amin
Schools: IIM Lucknow (IPMX)  Class of 2014

Re: Absolute values DS questions... [#permalink]
Show Tags
23 Oct 2009, 22:35
1
This post received KUDOS
Hi Bunuel, can you please explain: 0<=x<=1 > xx+1=1 > 1=1. Which means that for ANY value from the range 0<=x<=1, equation x + x 1 = 1 holds true. we cannot derive anything in this interval, does it mean that all values in this interval satisfy the equation ? This is something new for me...do you have any links for this? I thought, since we cannot derive anything, this interval is also out of scope. Though, I got the answer by some quick number substitutions.



Math Expert
Joined: 02 Sep 2009
Posts: 43831

Re: Absolute values DS questions... [#permalink]
Show Tags
23 Oct 2009, 22:56
Economist wrote: Hi Bunuel, can you please explain: 0<=x<=1 > xx+1=1 > 1=1. Which means that for ANY value from the range 0<=x<=1, equation x + x 1 = 1 holds true. we cannot derive anything in this interval, does it mean that all values in this interval satisfy the equation ? This is something new for me...do you have any links for this? I thought, since we cannot derive anything, this interval is also out of scope. Though, I got the answer by some quick number substitutions. Well knew that this part needs more explanation. When \(x\) is in the range \(0\leq{x}\leq{1}\), equation \(x+x1=1\) will become: \(xx+1=1\) > \(1=1\). Which is true, indeed \(1=1\). But what does that mean? This means that when \(x\) is in this range, equation takes the form of \(xx+1=1\) and value of \(x\) does not affects the equation as it cancels out. OR in other words any \(x\) from this range makes equation to hold true. You can try some number picking from this range to see that. Hope it's clear. Please tell me if it needs more clarification. BTW what answer did you get?
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Senior Manager
Joined: 16 Apr 2009
Posts: 315

Re: Absolute values DS questions... [#permalink]
Show Tags
25 Oct 2009, 14:08
bunuel / economist, Can you please clear my concept here: Is x + x 1 = 1? i thought that an absolute can not be negative , so x can not be less than 0 like in case of x = 3x – 2 , absolute value can not be negative why did you consider x <0 ? can you please explain or point me to some document , may be this is a basic question , but damn i am confused
_________________
Always tag your question



Math Expert
Joined: 02 Sep 2009
Posts: 43831

Re: Absolute values DS questions... [#permalink]
Show Tags
25 Oct 2009, 15:25
9
This post received KUDOS
Expert's post
7
This post was BOOKMARKED
ichha148 wrote: bunuel / economist, Can you please clear my concept here: Is x + x 1 = 1? i thought that an absolute can not be negative , so x can not be less than 0 like in case of x = 3x – 2 , absolute value can not be negative why did you consider x <0 ? can you please explain or point me to some document , may be this is a basic question , but damn i am confused When we have equation of a type: \(x=3x2\), we should consider two cases: 1. \(x<0\) > \(x=x\) > \(x=3x2\) > \(x=\frac{1}{2}\), not a vaild solution for this range as we are considering \(x<0\). Which means that when \(x<0\) equation \(x=3x2\) has no real roots. 2. \(x\geq{0}\) > \(x=x\) > \(x=3x2\) > \(x=1\), good as \(x>0\). Final answer: equation \(x=3x2\) has one root \(x=1\). BUT the problem above can be solved in another way:You should notice following: \(3x2\) is equal to "something" and that "something", as it is an absolute value, cannot be negative. So, we conclude that \(3x2\) cannot be negative. \(3x2\geq{0}\) > \(x\geq{\frac{2}{3}}\). After that when we definitely know that \(x\geq{\frac{2}{3}}>0\), we can check only ONE range for \(x\), which is \(x\geq{\frac{2}{3}}>0\) and write \(x=x\). So, equation will become \(x=3x2\) > \(x=1\). But if it were: \(x=3x2\), we can definitely say that \(x\geq{0}\), but we cannot write \(x=3x2\). We should still check two ranges: 1. \(0\leq{x}\leq{\frac{2}{3}}\) > \(x=3x+2\) > \(x=\frac{1}{2}\); 2. \(\frac{2}{3}<x\) >\(x=3x2\) > \(x=1\). So, this equation has two roots 1/2 and 1. Third case: \(x=3x2\). In this case we should consider 3 ranges: 1. \(x<0\) > \(x=3x+2\) > \(x=1\), not good as \(x<0\); 2. \(0\leq{x}\leq{\frac{2}{3}}\) > \(x=3x+2\) > \(x=\frac{1}{2}\); 3. \(\frac{2}{3}<x\) > \(x=3x2\) > \(x=1\). Again two roots 1/2 and 1. Back to our original question:Is \(x+x1=1\)? (1) x ≥ 0 (2) x ≤ 1 Absolute value, \(x\), cannot be negative, BUT \(x\) in it can be. \(x\geq{0}\) but \(x\) can be \(3<0\) > \(3=3>0\). Basically here we have the sum of two absolute values, or the sum of two non negative values totaling 1. But again \(x\) in it can take negative values and still these two can give us 1 as their sum. Q: is \(x+x1=1\)? This equation can be true in some ranges of \(x\) and false in another, or can be true/false in all of the ranges. Thus we should check ALL ranges for \(x\) to answer the question. How to do this? There are two crucial points when absolute values \(x\) and \(x 1\) flip signs, two check points 0 (\(x=0\)) and 1 \((x1=0\), \(x=1\)). Thus three ranges must be checked: 1. \(x<0\) > \(xx+1=1\) > \(x=0\). Not good as \(x<0\); 2. \(0\leq{x}\leq{1}\) > \(xx+1=1\) > \(1=1\). Which means that for ANY value from the range \(0\leq{x}\leq{1}\), equation \(x+x1=1\) holds true. 3. \(x>1\) > \(x+x1=1\) > \(x=1\). Not good as \(x>1\). Note that we aren't considering the statements (1) and (2) yet. We are just checking in which range the equation \(x+x1=1\) holds true. And from 1. 2. and 3. we get that it's true ONLY in the range \(0\leq{x}\leq{1}\) and not true in all other ranges. But at this stage we still don't know in which range \(x\) is. Moving to the statements: (1) x ≥ 0. Not sufficient, as x must be also <=1 (2) x ≤ 1. Not sufficient, as x must be also >=0. (1)+(2) \(0\leq{x}\leq{1}\), exactly the range we needed. Sufficient. Answer: C. Hope it's clear.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Senior Manager
Joined: 16 Apr 2009
Posts: 315

Re: Absolute values DS questions... [#permalink]
Show Tags
25 Oct 2009, 17:48
bunuel  thanks for explaning this in such a detail ,i really appreciate this ,+1 to you 1 more doubt from your explaination and hope you don't mind in explaining But if it were:x= 3x – 2, we can definitely say that x>=0, but we can not write x=3x2. We should check two ranges: 0<=x<=2/3 > x=3x+2 > x=1/2 2/3<x > x=3x2 > x=1. So, this equation has two roots 1/2 and 1.How did you reach at these ranges  the way i think is 3x2 can be either +ve or ve 3x2 >0 > x >2 /3 3x2 <0 > x < 2/3 > how did you changed this range to 0<= x <= 2/3 is this because absolute value can not be negative , but why the equal sign
_________________
Always tag your question



Math Expert
Joined: 02 Sep 2009
Posts: 43831

Re: Absolute values DS questions... [#permalink]
Show Tags
25 Oct 2009, 18:20
ichha148 wrote: bunuel  thanks for explaning this in such a detail ,i really appreciate this ,+1 to you
1 more doubt from your explaination and hope you don't mind in explaining
But if it were:x= 3x – 2, we can definitely say that x>=0, but we can not write x=3x2. We should check two ranges: 0<=x<=2/3 > x=3x+2 > x=1/2 2/3<x > x=3x2 > x=1. So, this equation has two roots 1/2 and 1.
How did you reach at these ranges  the way i think is 3x2 can be either +ve or ve
3x2 >0 > x >2 /3 3x2 <0 > x < 2/3 > how did you changed this range to 0<= x <= 2/3 is this because absolute value can not be negative , but why the equal sign \(x=3x2\) Left Hand Side is \(x\); RHS is \(3x2\); RHS is absolute value, which means that it's never negative. If \(RHS\geq{0}\) (more than or equal to zero), hence LHS, \(x\), must be also \(\geq{0}\). \(x\geq{0}\). Actually we should check \(x=3x2\) for two ranges. 1. \(3x2\leq{0}\) > \(x\leq{\frac{2}{3}}\) (Note I'm saying that \(3x2\leq{0}\), not \(3x2\leq{0}\), the something that is in  can be negative, but the absolute value of \(3x2\) which is \(3x2\) can not.) 2. \(3x2>0\) > \(x>\frac{2}{3}\) (I put = in first, because \(3x2\) can be zero thus zero must be included in either of ranges we check) So TWO ranges \(x\leq{\frac{2}{3}}\) and \(x>\frac{2}{3}\). BUT since we already determined that \(x\geq{0}\), we could narrow the first range \(x\leq{\frac{2}{3}}\) to \(0\leq{x}\leq{\frac{2}{3}}\). In fact if you write just \(x\leq{\frac{2}{3}}\) it won't affect anything in this case, I just wanted to demonstrate what you can notice at first glance when looking at the equations of these type. Meaning, when we have \(x=3x2\), it should be clear that as RHS is absolute value, thus LHS, \(x\) must be more or equal to zero, \(x\geq{0}\). The way you've written is almost right: \(3x2>0\) > \(x>\frac{2}{3}\); \(3x2<0\) > \(x<\frac{2}{3}\); You should just add \(=\) sign in one of them, as to include possibility that \(3x2\) can be equal to 0.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Senior Manager
Affiliations: PMP
Joined: 13 Oct 2009
Posts: 296

Re: Absolute values DS questions... [#permalink]
Show Tags
25 Oct 2009, 19:08
2
This post received KUDOS
I got C by substituting some numbers: Is x + x 1 = 1? lets call this the equation. (1) x ≥ 0 (2) x ≤ 1 S1) X>=0 when x= 1, equation holds true, when x =0 equation holds true,but when x = 3 equation doesn't hold true  insuff S2) x<=1 when x=0 equation holds true, x=1 equation doesn't hold true  insuff Combining S1 and S2, we have 0<=x<=1 and using 0, 1 for x we know equation holds true, try 0.5, 0.3 and 0.7 for equation , still holds true  hence C is correct. I like Bunuel's explanation though  as almost always..
_________________
Thanks, Sri  keep uppp...ing the tempo...
Press +1 Kudos, if you think my post gave u a tiny tip



Senior Manager
Joined: 16 Apr 2009
Posts: 315

Re: Absolute values DS questions... [#permalink]
Show Tags
26 Oct 2009, 18:22
Bunuel wrote: ichha148 wrote: bunuel  thanks for explaning this in such a detail ,i really appreciate this ,+1 to you
1 more doubt from your explaination and hope you don't mind in explaining
But if it were:x= 3x – 2, we can definitely say that x>=0, but we can not write x=3x2. We should check two ranges: 0<=x<=2/3 > x=3x+2 > x=1/2 2/3<x > x=3x2 > x=1. So, this equation has two roots 1/2 and 1.
How did you reach at these ranges  the way i think is 3x2 can be either +ve or ve
3x2 >0 > x >2 /3 3x2 <0 > x < 2/3 > how did you changed this range to 0<= x <= 2/3 is this because absolute value can not be negative , but why the equal sign x= 3x – 2 Left Hand Side=x RHS=3x – 2 RHS is absolute value, which means that it's never negative. If RHS>=0 (more or equal), hence LHS x, must be also >=0. x>=0. Actually we should check x= 3x – 2 for two ranges. 1. 3x2<=0, x<=2/3 (Note I'm saying that 3x2<=0, not 3x – 2<=0, the something that is in  can be negative, but the absolute value of 3x2 which is 3x – 2 can not.) 2. 3x2>0, x>2/3 (I put = in first, because 3x – 2 can be zero thus zero must be included in either of ranges we check) So TWO ranges x<=2/3 and x>2/3. BUT since we already determined that x>=0, we could narrow the first range x<=2/3 to 0<=x<=2/3. In fact if you write just x<=2/3 it won't affect anything in this case, I just wanted to demonstrate what you can notice at first glance when looking at the equations of these type. Meaning, when we have x= 3x – 2, it should be clear that as RHS is absolute value, thus LHS x must be more or equal to zero, x>=0. The way you've written is almost right: 3x2 >0 > x >2 /3 3x2 <0 > x < 2/3 You should just add = sign in one of them, as to include possibility that 3x2 can be equal to 0. Thanks again Bunuel , you are awesome
_________________
Always tag your question



Intern
Joined: 21 Jul 2006
Posts: 11

Re: Absolute values DS questions... [#permalink]
Show Tags
26 Oct 2009, 20:15
could it get any better. Thank a lot for this explaination



Manager
Joined: 26 Aug 2010
Posts: 70
Location: India

1
This post received KUDOS
Bunuel, I am confused here.. "B. 0<=x<=1 > xx+1=1 > 1=1. Which means that for ANY value from the range 0<=x<=1, equation x + x 1 = 1 holds true."I am confused that how first x is +ive and second one ve...after we take condition 0<=x<=1? Pls, explain. Thanks!
_________________
Spread some happiness..Press Kudos!



Math Expert
Joined: 02 Sep 2009
Posts: 43831

1
This post received KUDOS
Expert's post
1
This post was BOOKMARKED
samark wrote: Bunuel,
I am confused here.. "B. 0<=x<=1 > xx+1=1 > 1=1. Which means that for ANY value from the range 0<=x<=1, equation x + x 1 = 1 holds true."
I am confused that how first x is +ive and second one ve...after we take condition 0<=x<=1? Pls, explain.
Thanks! We know that for \(x\): When \(x\leq{0}\), then \(x=x\); When \(x\geq{0}\), then \(x=x\). We have \(x + x 1 = 1\). Now for the range: \(0\leq{x}\leq{1}\) > \(x=x\) (as \(x\) in given range is positive) and \(x1=(x1)=x+1\) (as expression \(x1\) in the given range is negative, to check this try some \(x\) from this range, let \(x=0.5\) then \(x1=0.51=0.5=negative\)). So \(x + x 1 = 1\) in this range becomes: \(xx+1=1\) > \(1=1\), which is true. That means that for ANY value from the range \(0\leq{x}\leq{1}\), equation \(x + x 1 = 1\) holds true. Hope it's clear.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Manager
Joined: 26 Aug 2010
Posts: 70
Location: India

Oh..so it comes from: \(x1=(x1)=x+1\) (as expression \(x1\) in the given range is negative). Thanks a ton..I shud've realized it before.. and all the best for ur G.mat!
_________________
Spread some happiness..Press Kudos!



Math Expert
Joined: 02 Sep 2009
Posts: 43831

Re: Absolute values DS questions... [#permalink]
Show Tags
18 Sep 2010, 06:02



Manager
Joined: 26 Aug 2010
Posts: 70
Location: India

Re: Absolute values DS questions... [#permalink]
Show Tags
18 Sep 2010, 06:09
cano wrote: How do you know that the number is an integer? Cano, We are not assuming any integer values. Whether, value of x is integer or fractions(decimals)...the explanation above proves the answer. What we are dealing herewith are ranges after knowing boundary values..(as you can see in Bunuel explanation), viz: A. x<0 B. 0<=x<=1 C. x>1 We find that only B. 0<=x<=1 holds true..after plugging in original statement. Until now, we haven't seen statements (1) and (2) yet. We just checked out of which of three range the equation "x + x 1 = 1 holds true". So, our mission now becomes to verify whether x falls between range 0 to 1 or out of this range (As it is a Yes or No qus) Statement 1: told us x ≥ 0. But, what if it is greater than 2. e.g: x=8/6Statement 2: told us x ≤ 1. But, what if it is less than 0.. e.g x=3.7Combining both 1 +2 tells that 0<=x<=1. So, x value can be either 0, 0.6 or 1. (integer or decimal)This proves that x + x 1 = 1. Choice C. Cheers!
_________________
Spread some happiness..Press Kudos!
Last edited by samark on 18 Sep 2010, 06:13, edited 2 times in total.



VP
Status: Current Student
Joined: 24 Aug 2010
Posts: 1344
Location: United States
WE: Sales (Consumer Products)

Re: Absolute values DS questions... [#permalink]
Show Tags
18 Sep 2010, 16:07
1
This post received KUDOS
I got C. I plugged in numbers for each statement. If x=0, then true. If x=1, then true. If x=2, then not true. S1 not sufficient If x=1, then true. If x=2, then not true. S2 not sufficient if x is between 0 and 1 inclusive that means we plug in fractions (plus we already know that it's true for 0 and 1). No matter what fraction x represents 1x will always give the value needed to add to x to make it = 1. Thus C is sufficient.
_________________
The Brain Dump  From Low GPA to Top MBA (Updated September 1, 2013)  A Few of My Favorite Things> http://cheetarah1980.blogspot.com



Manager
Status: Do till 740 :)
Joined: 13 Jun 2011
Posts: 106
Concentration: Strategy, General Management
GPA: 3.6
WE: Consulting (Computer Software)

Re: Is x + x 1 = 1? (1) x 0 (2) x 1 [#permalink]
Show Tags
18 Nov 2012, 00:00
Hi buneul,
in the second range why do we take the less than equal to sign
0<=x<=1?
When i was going through certain other problems , we do not consider <= or >= in all cases.
Please let me know when we have to consider the <= range



Manager
Joined: 22 Dec 2012
Posts: 114

Re: Is x + x 1 = 1? (1) x 0 (2) x 1 [#permalink]
Show Tags
17 Aug 2013, 15:13
Shouldn't it be mandatory that X is an integer? Or that is assumed implicitly?




Re: Is x + x 1 = 1? (1) x 0 (2) x 1
[#permalink]
17 Aug 2013, 15:13



Go to page
1 2
Next
[ 39 posts ]



