Last visit was: 14 May 2024, 06:28 It is currently 14 May 2024, 06:28

Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
SORT BY:
Kudos
Tags:
Show Tags
Hide Tags
Math Expert
Joined: 02 Sep 2009
Posts: 93257
Own Kudos [?]: 623638 [1]
Given Kudos: 81862
Send PM
Math Expert
Joined: 02 Sep 2009
Posts: 93257
Own Kudos [?]: 623638 [1]
Given Kudos: 81862
Send PM
Math Expert
Joined: 02 Sep 2009
Posts: 93257
Own Kudos [?]: 623638 [1]
Given Kudos: 81862
Send PM
User avatar
Current Student
Joined: 23 Oct 2010
Posts: 235
Own Kudos [?]: 1113 [0]
Given Kudos: 73
Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
9. If x is a positive integer then the value of \frac{22^{22x}-22^{2x}}{11^{11x}-11^x} is closest to which of the following?
A. 2^{11x}
B. 11^{11x}
C. 22^{11x}
D. 2^{22x}*11^{11x}
E. 2^{22x}*11^{22x}


let 11=a

so we have

(2a^(2ax)-2a^2x)/(a^(ax)-a^x)=2*((a^(ax)-a^x)*(a^(ax)+a^x))/(a^(ax)-a^x)=2(a^(ax)+a^x)

2(a^(ax)+a^x)=2*(11^(11x)+11^x)
User avatar
Current Student
Joined: 23 Oct 2010
Posts: 235
Own Kudos [?]: 1113 [0]
Given Kudos: 73
Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
IanStewart wrote:

And it looks as though every other question has been solved except for this one. I won't solve it completely, but I'll help people get started. Here, since we are asked for an approximation only, we don't need to compute an exact value. You might notice that if x is a positive integer, \(22^{22x}\) is vastly bigger than \(22^{2x}\). Since that's true, if we only need to estimate, we can ignore the small term. We can do the same thing in the denominator.


2a^(2ax)/a^(ax)=2*a^(ax)=2*11^(11x)

ans is ?
User avatar
Intern
Intern
Joined: 03 Nov 2010
Posts: 9
Own Kudos [?]: 3 [0]
Given Kudos: 0
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Bunuel wrote:
4^{\sqrt{y}


For Question #3.
I'm confused why 4 squareroot Y = (2 squareroot Y)^2 instead of (2 ^2 squareroot Y).

Not sure I understand the properties correctly...
Math Expert
Joined: 02 Sep 2009
Posts: 93257
Own Kudos [?]: 623638 [0]
Given Kudos: 81862
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Expert Reply
KGG88 wrote:
Bunuel wrote:
4^{\sqrt{y}


For Question #3.
I'm confused why 4 squareroot Y = (2 squareroot Y)^2 instead of (2 ^2 squareroot Y).

Not sure I understand the properties correctly...



\(4^{\sqrt{y}}=(2^2)^{\sqrt{y}}=2^{2*\sqrt{y}}=(2^{\sqrt{y}})^2\).

Check this for properties: tough-and-tricky-exponents-and-roots-questions-125956.html#p1027888

Hope it helps.
User avatar
Manager
Manager
Joined: 22 Dec 2011
Posts: 175
Own Kudos [?]: 1047 [0]
Given Kudos: 32
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Bunuel wrote:
8. If \(x\) is a positive number and equals to \(\sqrt{6+{\sqrt{6+\sqrt{6+\sqrt{6+...}}}}}\), where the given expression extends to an infinite number of roots, then what is the value of x?
A. \(\sqrt{6}\)
B. 3
C. \(1+\sqrt{6}\)
D. \(2\sqrt{3}\)
E. 6

Given: \(x>0\) and \(x=\sqrt{6+{\sqrt{6+\sqrt{6+\sqrt{6+...}}}}}\) --> \(x=\sqrt{6+({\sqrt{6+\sqrt{6+\sqrt{6+...})}}}}\), as the expression under the square root extends infinitely then expression in brackets would equal to \(x\) itself and we can safely replace it with \(x\) and rewrite the given expression as \(x=\sqrt{6+x}\). Square both sides: \(x^2=6+x\) --> \((x+2)(x-3)=0\) --> \(x=-2\) or \(x=3\), but since \(x>0\) then: \(x=3\).

Answer: B.


Hi Bunuel - All sols are crystal clear except this one logic mentioned here. I'm not able to understand the below part. Could you please elaborate?

\(x=\sqrt{6+({\sqrt{6+\sqrt{6+\sqrt{6+...})}}}}\), as the expression under the square root extends infinitely then expression in brackets would equal to \(x\) itself and we can safely replace it with \(x\) and rewrite the given expression as \(x=\sqrt{6+x}\).

Cheers
User avatar
Intern
Intern
Joined: 13 Jun 2010
Posts: 11
Own Kudos [?]: 186 [0]
Given Kudos: 0
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Thanks Bunuel for these interesting problems.

With respect to problem number 2

"So, we have that the units digit of is 1 and the units digit of is 3. Also notice that the second number is much larger then the first one, thus their difference will be negative, something like 11-13=-2, which gives the final answer that the units digit of is 2."

I don't understand the above statement. If the last digit is 1 for the smaller number and the last digit is 3 for the larger number.
And we are trying to find different between smaller number - larger number

eg 757571 - 58299374483. We borrow one from the previous digit and make 1 as 11 and then subtract 3 from 11. So shouldn't the last digit be 8.

I am unable to think any other way. Please let me know where I am going wrong.

Thanks
gmatrant
Math Expert
Joined: 02 Sep 2009
Posts: 93257
Own Kudos [?]: 623638 [0]
Given Kudos: 81862
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Expert Reply
gmatrant wrote:
Thanks Bunuel for these interesting problems.

With respect to problem number 2

"So, we have that the units digit of is 1 and the units digit of is 3. Also notice that the second number is much larger then the first one, thus their difference will be negative, something like 11-13=-2, which gives the final answer that the units digit of is 2."

I don't understand the above statement. If the last digit is 1 for the smaller number and the last digit is 3 for the larger number.
And we are trying to find different between smaller number - larger number

eg 757571 - 58299374483. We borrow one from the previous digit and make 1 as 11 and then subtract 3 from 11. So shouldn't the last digit be 8.

I am unable to think any other way. Please let me know where I am going wrong.

Thanks
gmatrant


First of all 757,571 - 58,299,374,483 = -58,298,616,912

You could consider easier cases: 11-13=-2, 11-23=-12, 21-83=-62, ...
Manager
Manager
Joined: 16 Jan 2013
Posts: 66
Own Kudos [?]: 21 [0]
Given Kudos: 1323
Location: Bangladesh
GMAT 1: 490 Q41 V18
GMAT 2: 610 Q45 V28
GPA: 2.75
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Note that we need approximate value of the given expression. Now, \(22^{22x}\) is much larger number than \(22^{2x}\). Hence \(22^{22x}-22^{2x}\) will be very close to \(22^{22x}\) itself, basically \(22^{2x}\) is negligible in this case. The same way \(11^{11x}-11^x\) will be very close to \(11^{11x}\) itself.


Hello Bunuel,
Nice explanations. I am a little confused with the fact which you mentioned as "negligible" in this math. Wouldn't this deduction change the result of the answer?

Thanks. :)
Intern
Intern
Joined: 02 Dec 2017
Posts: 13
Own Kudos [?]: 1 [0]
Given Kudos: 45
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Bunuel wrote:
3. If \(5^{10x}=4,900\) and \(2^{\sqrt{y}}=25\) what is the value of \(\frac{(5^{(x-1)})^5}{4^{-\sqrt{y}}}\)?
A. 14/5
B. 5
C. 28/5
D. 13
E. 14

First thing one should notice here is that \(x\) and \(y\) must be some irrational numbers (4,900 has other primes then 5 in its prime factorization and 25 doesn't have 2 as a prime at all), so we should manipulate with given expressions rather than to solve for x and y.

\(5^{10x}=4,900\) --> \((5^{5x})^2=70^2\) --> \(5^{5x}=70\)

\(\frac{(5^{(x-1)})^5}{4^{-\sqrt{y}}}=5^{(5x-5)}*4^{\sqrt{y}}=5^{5x}*5^{-5}*(2^{\sqrt{y}})^2=70*5^{-5}*25^2=70*5^{-5}*5^4=70*5^{-1}=\frac{70}{5}=14\)

Answer: E.


Hey there, just one remark. Why could 4sqrt/y not become by 2 x 2 sqrt/y? why is it definitely (2 sqrt/y)^2 ?

thanks
Intern
Intern
Joined: 27 May 2017
Posts: 12
Own Kudos [?]: 8 [0]
Given Kudos: 196
Location: India
Concentration: Entrepreneurship, Strategy
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Bunuel wrote:
2. What is the units digit of \((17^3)^4-1973^{3^2}\)?
A. 0
B. 2
C. 4
D. 6
E. 8

Must know for the GMAT:
I. The units digit of \((abc)^n\) is the same as that of \(c^n\), which means that the units digit of \((17^3)^4\) is that same as that of \((7^3)^4\) and the units digit of \(1973^{3^2}\) is that same as that of \(3^{3^2}\).

II. If exponentiation is indicated by stacked symbols, the rule is to work from the top down, thus:
\(a^m^n=a^{(m^n)}\) and not \((a^m)^n\), which on the other hand equals to \(a^{mn}\).

So:
\((a^m)^n=a^{mn}\);

\(a^m^n=a^{(m^n)}\).

Thus, \((7^3)^4=7^{(3*4)}=7^{12}\) and \(3^{3^2}=3^{(3^2)}=3^9\).

III. The units digit of integers in positive integer power repeats in specific pattern (cyclicity): The units digit of 7 and 3 in positive integer power repeats in patterns of 4:

1. 7^1=7 (last digit is 7)
2. 7^2=9 (last digit is 9)
3. 7^3=3 (last digit is 3)
4. 7^4=1 (last digit is 1)

5. 7^5=7 (last digit is 7 again!)
...

1. 3^1=3 (last digit is 3)
2. 3^2=9 (last digit is 9)
3. 3^3=27 (last digit is 7)
4. 3^4=81 (last digit is 1)

5. 3^5=243 (last digit is 3 again!)
...

Thus th units digit of \(7^{12}\) will be 1 (4th in pattern, as 12 is a multiple of cyclicty number 4) and the units digit of \(3^9\) will be 3 (first in pattern, as 9=4*2+1).

So, we have that the units digit of \((17^3)^4=17^{12}\) is 1 and the units digit of \(1973^3^2=1973^9\) is 3. Also notice that the second number is much larger then the first one, thus their difference will be negative, something like 11-13=-2, which gives the final answer that the units digit of \((17^3)^4-1973^{3^2}\) is 2.
Answer B.


==============================================

Hi Bunuel

I have a doubt here.
If we are doing this subtraction (1-3). And, if we would have actually solved the whole subtraction of the number. the we would have borrowed 10 from the tens digit. So, the final subtraction would have looked like (11-3)= 8
please let me know if I am correct or not. if not, then why?
Manager
Manager
Joined: 11 Feb 2013
Posts: 202
Own Kudos [?]: 305 [0]
Given Kudos: 60
Location: United States (TX)
Concentration: Finance
GMAT 1: 490 Q44 V15
GMAT 2: 690 Q47 V38
GRE 1: Q165 V155
GPA: 3.05
WE:Analyst (Commercial Banking)
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Bunuel wrote:
2. What is the units digit of \((17^3)^4-1973^{3^2}\)?
A. 0
B. 2
C. 4
D. 6
E. 8

Must know for the GMAT:
I. The units digit of \((abc)^n\) is the same as that of \(c^n\), which means that the units digit of \((17^3)^4\) is that same as that of \((7^3)^4\) and the units digit of \(1973^{3^2}\) is that same as that of \(3^{3^2}\).

II. If exponentiation is indicated by stacked symbols, the rule is to work from the top down, thus:
\(a^m^n=a^{(m^n)}\) and not \((a^m)^n\), which on the other hand equals to \(a^{mn}\).

So:
\((a^m)^n=a^{mn}\);

\(a^m^n=a^{(m^n)}\).

Thus, \((7^3)^4=7^{(3*4)}=7^{12}\) and \(3^{3^2}=3^{(3^2)}=3^9\).

III. The units digit of integers in positive integer power repeats in specific pattern (cyclicity): The units digit of 7 and 3 in positive integer power repeats in patterns of 4:

1. 7^1=7 (last digit is 7)
2. 7^2=9 (last digit is 9)
3. 7^3=3 (last digit is 3)
4. 7^4=1 (last digit is 1)

5. 7^5=7 (last digit is 7 again!)
...

1. 3^1=3 (last digit is 3)
2. 3^2=9 (last digit is 9)
3. 3^3=27 (last digit is 7)
4. 3^4=81 (last digit is 1)

5. 3^5=243 (last digit is 3 again!)
...

Thus th units digit of \(7^{12}\) will be 1 (4th in pattern, as 12 is a multiple of cyclicty number 4) and the units digit of \(3^9\) will be 3 (first in pattern, as 9=4*2+1).

So, we have that the units digit of \((17^3)^4=17^{12}\) is 1 and the units digit of \(1973^3^2=1973^9\) is 3. Also notice that the second number is much larger then the first one, thus their difference will be negative, something like 11-13=-2, which gives the final answer that the units digit of \((17^3)^4-1973^{3^2}\) is 2.

Answer B.


HOW the second number is much larger then the first one?
Math Expert
Joined: 02 Sep 2009
Posts: 93257
Own Kudos [?]: 623638 [0]
Given Kudos: 81862
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Expert Reply
BelalHossain046 wrote:
Bunuel wrote:
2. What is the units digit of \((17^3)^4-1973^{3^2}\)?
A. 0
B. 2
C. 4
D. 6
E. 8

Must know for the GMAT:
I. The units digit of \((abc)^n\) is the same as that of \(c^n\), which means that the units digit of \((17^3)^4\) is that same as that of \((7^3)^4\) and the units digit of \(1973^{3^2}\) is that same as that of \(3^{3^2}\).

II. If exponentiation is indicated by stacked symbols, the rule is to work from the top down, thus:
\(a^m^n=a^{(m^n)}\) and not \((a^m)^n\), which on the other hand equals to \(a^{mn}\).

So:
\((a^m)^n=a^{mn}\);

\(a^m^n=a^{(m^n)}\).

Thus, \((7^3)^4=7^{(3*4)}=7^{12}\) and \(3^{3^2}=3^{(3^2)}=3^9\).

III. The units digit of integers in positive integer power repeats in specific pattern (cyclicity): The units digit of 7 and 3 in positive integer power repeats in patterns of 4:

1. 7^1=7 (last digit is 7)
2. 7^2=9 (last digit is 9)
3. 7^3=3 (last digit is 3)
4. 7^4=1 (last digit is 1)

5. 7^5=7 (last digit is 7 again!)
...

1. 3^1=3 (last digit is 3)
2. 3^2=9 (last digit is 9)
3. 3^3=27 (last digit is 7)
4. 3^4=81 (last digit is 1)

5. 3^5=243 (last digit is 3 again!)
...

Thus th units digit of \(7^{12}\) will be 1 (4th in pattern, as 12 is a multiple of cyclicty number 4) and the units digit of \(3^9\) will be 3 (first in pattern, as 9=4*2+1).

So, we have that the units digit of \((17^3)^4=17^{12}\) is 1 and the units digit of \(1973^3^2=1973^9\) is 3. Also notice that the second number is much larger then the first one, thus their difference will be negative, something like 11-13=-2, which gives the final answer that the units digit of \((17^3)^4-1973^{3^2}\) is 2.

Answer B.


HOW the second number is much larger then the first one?


Why is second number much larger then the first one? Consider this, even if we had (100^3)^4 (instead of (17^3)^4) and 1000^(3^2) (instead of 1973^(3^2)) --> (100^3)^4=100^12=10^24 and 1000^(3^2)=1,000^9=10^27.

I explained this several times in this thread: https://gmatclub.com/forum/new-tough-an ... l#p2043010

Hope it's clear.
Manager
Manager
Joined: 15 Feb 2021
Posts: 183
Own Kudos [?]: 221 [0]
Given Kudos: 13
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Bunuel wrote:
Exponents and roots problems are very common on the GMAT. So, it's extremely important to know how to manipulate them, how to factor out, take roots, multiply, divide, etc. Below are 11 problems to test your skills. Please post your thought process/solutions along with the answers.

I'll post OA's with detailed solutions tomorrow. Good luck.


1. What is the value of \(\sqrt{25+10\sqrt{6}}+\sqrt{25-10\sqrt{6}}\)?
A. \(2\sqrt{5}\)
B. \(\sqrt{55}\)
C. \(2\sqrt{15}\)
D. 50
E. 60

Solution: https://gmatclub.com/forum/tough-and-tri ... l#p1029216

2. What is the units digit of \((17^3)^4-1973^{3^2}\)?
A. 0
B. 2
C. 4
D. 6
E. 8

Solution: https://gmatclub.com/forum/tough-and-tri ... l#p1029219

3. If \(5^{10x}=4,900\) and \(2^{\sqrt{y}}=25\) what is the value of \(\frac{(5^{(x-1)})^5}{4^{-\sqrt{y}}}\)?
A. 14/5
B. 5
C. 28/5
D. 13
E. 14

Solution: https://gmatclub.com/forum/tough-and-tri ... l#p1029221

4. What is the value of \(5+4*5+4*5^2+4*5^3+4*5^4+4*5^5\)?
A. 5^6
B. 5^7
C. 5^8
D. 5^9
E. 5^10

Solution: https://gmatclub.com/forum/tough-and-tri ... l#p1029222

5. If \(x=23^2*25^4*27^6*29^8\) and is a multiple of \(26^n\), where \(n\) is a non-negative integer, then what is the value of \(n^{26}-26^n\)?
A. -26
B. -25
C. -1
D. 0
E. 1

Solution: https://gmatclub.com/forum/tough-and-tri ... l#p1029223

6. If \(x=\sqrt[5]{-37}\) then which of the following must be true?
A. \(\sqrt{-x}>2\)
B. x>-2
C. x^2<4
D. x^3<-8
E. x^4>32

Solution: https://gmatclub.com/forum/tough-and-tri ... l#p1029224

7. If \(x=\sqrt{10}+\sqrt[3]{9}+\sqrt[4]{8}+\sqrt[5]{7}+\sqrt[6]{6}+\sqrt[7]{5}+\sqrt[8]{4}+\sqrt[9]{3}+\sqrt[10]{2}\), then which of the following must be true:
A. x<6
B. 6<x<8
C. 8<x<10
D. 10<x<12
E. x>12

Solution: https://gmatclub.com/forum/tough-and-tri ... l#p1029227

8. If \(x\) is a positive number and equals to \(\sqrt{6+{\sqrt{6+\sqrt{6+\sqrt{6+...}}}}}\), where the given expression extends to an infinite number of roots, then what is the value of x?
A. \(\sqrt{6}\)
B. 3
C. \(1+\sqrt{6}\)
D. \(2\sqrt{3}\)
E. 6

Solution: https://gmatclub.com/forum/tough-and-tri ... l#p1029228

9. If \(x\) is a positive integer then the value of \(\frac{22^{22x}-22^{2x}}{11^{11x}-11^x}\) is closest to which of the following?
A. \(2^{11x}\)
B. \(11^{11x}\)
C. \(22^{11x}\)
D. \(2^{22x}*11^{11x}\)
E. \(2^{22x}*11^{22x}\)

Solution: https://gmatclub.com/forum/tough-and-tri ... l#p1029229

10. Given that \(5x=125-3y+z\) and \(\sqrt{5x}-5-\sqrt{z-3y}=0\), then what is the value of \(\sqrt{\frac{45(z-3y)}{x}}\)?
A. 5
B. 10
C. 15
D. 20
E. Can not be determined

Solution: https://gmatclub.com/forum/tough-and-tri ... l#p1029231

11. If \(x>0\), \(x^2=2^{64}\) and \(x^x=2^y\) then what is the value of \(y\)?
A. 2
B. 2^(11)
C. 2^(32)
D. 2^(37)
E. 2^(64)

Solution: https://gmatclub.com/forum/tough-and-tri ... l#p1029232


A question about chained exponents. In the second question you say:

\({1973^{3}}^{2} = 1973^{9}\)

But, as the '3' digit is not bigger in font size than the '2' digit I interpreted it as:

\({1973^{3}}^{2} = 1973^{6}\)

and my interpretacion is consistent with the way we write mathematical formulas here:

{1973^{3}}^{2} (look at the braces)

For example, if you have:

\({{{{7^{2}}^{3}}^{4}}^{5}}\)

How should we interpret it?

There are a lot of different interpretations and results.
Manager
Manager
Joined: 08 Aug 2022
Posts: 75
Own Kudos [?]: 34 [0]
Given Kudos: 185
Location: Morocco
WE:Advertising (Non-Profit and Government)
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Bunuel wrote:
SOLUTIONS:

1. What is the value of \(\sqrt{25+10\sqrt{6}}+\sqrt{25-10\sqrt{6}}\)?
A. \(2\sqrt{5}\)
B. \(\sqrt{55}\)
C. \(2\sqrt{15}\)
D. 50
E. 60

Square the given expression to get rid of the roots, though don't forget to un-square the value you get at the end to balance this operation and obtain the right answer:

Must know fro the GMAT: \((x+y)^2=x^2+2xy+y^2\) (while \((x-y)^2=x^2-2xy+y^2\)).

So we get: \((\sqrt{25+10\sqrt{6}}+\sqrt{25-10\sqrt{6}})^2=(\sqrt{25+10\sqrt{6}})^2+2(\sqrt{25+10\sqrt{6}})(\sqrt{25-10\sqrt{6}})+(\sqrt{25-10\sqrt{6}})^2=\)
\(=(25+10\sqrt{6})+2(\sqrt{25+10\sqrt{6}})(\sqrt{25-10\sqrt{6}})+(25-10\sqrt{6})\).

Note that sum of the first and the third terms simplifies to \((25+10\sqrt{6})+(25-10\sqrt{6})=50\), so we have \(50+2(\sqrt{25+10\sqrt{6}})(\sqrt{25-10\sqrt{6}})\) --> \(50+2(\sqrt{25+10\sqrt{6}})(\sqrt{25-10\sqrt{6}})=50+2\sqrt{(25+10\sqrt{6})(25-10\sqrt{6})}\).

Also must know for the GMAT: \((x+y)(x-y)=x^2-y^2\), thus \(50+2\sqrt{(25+10\sqrt{6})(25-10\sqrt{6})}=50+2\sqrt{25^2-(10\sqrt{6})^2)}=50+2\sqrt{625-600}=50+2\sqrt{25}=60\).

Recall that we should un-square this value to get the right the answer: \(\sqrt{60}=2\sqrt{15}\).

Answer: C.



Shouldn't the answer be +2sqrt15 or -2sqrt15? An equation with a squared variable always has two solutions. Bunuel TargetTestPrep
Senior Manager
Senior Manager
Joined: 12 Mar 2023
Posts: 292
Own Kudos [?]: 95 [0]
Given Kudos: 16
Location: India
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
please add more questions like this... not only in this session but please add this type of questions in other topics like fractions, profits etc...
Intern
Intern
Joined: 27 Nov 2022
Posts: 6
Own Kudos [?]: 0 [0]
Given Kudos: 28
WE:Programming (Computer Software)
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Q7. This is actually very easy. Notice that, 3^2 is 9, 3^3 is 2.
First term > 3^2 i.e. 9, so we can say that the root is obviously greater than 3. Same goes with the next term, 3√9 > 2^3, so it is greater than 2 aswell. For the rest of the terms, they are all greater than 1. If we add every element, it will always be greater than 12.
Hence, option E

Posted from my mobile device
Intern
Intern
Joined: 11 Dec 2022
Posts: 9
Own Kudos [?]: 0 [0]
Given Kudos: 282
Location: India
WE:Consulting (Manufacturing)
Send PM
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Bunuel wrote:
2. What is the units digit of \((17^3)^4-1973^{3^2}\)?
A. 0
B. 2
C. 4
D. 6
E. 8

Must know for the GMAT:
I. The units digit of \((abc)^n\) is the same as that of \(c^n\), which means that the units digit of \((17^3)^4\) is that same as that of \((7^3)^4\) and the units digit of \(1973^{3^2}\) is that same as that of \(3^{3^2}\).

II. If exponentiation is indicated by stacked symbols, the rule is to work from the top down, thus:
\(a^m^n=a^{(m^n)}\) and not \((a^m)^n\), which on the other hand equals to \(a^{mn}\).

So:
\((a^m)^n=a^{mn}\);

\(a^m^n=a^{(m^n)}\).

Thus, \((7^3)^4=7^{(3*4)}=7^{12}\) and \(3^{3^2}=3^{(3^2)}=3^9\).

III. The units digit of integers in positive integer power repeats in specific pattern (cyclicity): The units digit of 7 and 3 in positive integer power repeats in patterns of 4:

1. 7^1=7 (last digit is 7)
2. 7^2=9 (last digit is 9)
3. 7^3=3 (last digit is 3)
4. 7^4=1 (last digit is 1)

5. 7^5=7 (last digit is 7 again!)
...

1. 3^1=3 (last digit is 3)
2. 3^2=9 (last digit is 9)
3. 3^3=27 (last digit is 7)
4. 3^4=81 (last digit is 1)

5. 3^5=243 (last digit is 3 again!)
...

Thus th units digit of \(7^{12}\) will be 1 (4th in pattern, as 12 is a multiple of cyclicty number 4) and the units digit of \(3^9\) will be 3 (first in pattern, as 9=4*2+1).

So, we have that the units digit of \((17^3)^4=17^{12}\) is 1 and the units digit of \(1973^3^2=1973^9\) is 3. Also notice that [b]the second number is much larger then the first one
, thus their difference will be negative, something like 11-13=-2, which gives the final answer that the units digit of \((17^3)^4-1973^{3^2}\) is 2.[/b]

[b]Answer B.


In the last line I did Units digit for xxx1 - xxxx3 = 8, Can you help what am i doing wrong.
[Reference -You mentioned unit digit will be 2 as 1-2= -2]
GMAT Club Bot
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
   1   2   3   4   
Moderators:
Math Expert
93256 posts
Senior Moderator - Masters Forum
3136 posts

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne