Author 
Message 
TAGS:

Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 59588

The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
28 Oct 2019, 21:23
Question Stats:
57% (01:04) correct 43% (01:06) wrong based on 72 sessions
HideShow timer Statistics
Competition Mode Question The number of digits in the number \((4^{11})(5^{25}) =\) ? (A) 22 (B) 23 (C) 24 (D) 25 (E) 26
Official Answer and Stats are available only to registered users. Register/ Login.
_________________



Manager
Joined: 20 Jul 2019
Posts: 55

Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
28 Oct 2019, 21:40
4^11*5^25=2^22*5^22*125=10^22*5^3=125*10^22, no of digits=3+22=25
Posted from my mobile device



Director
Joined: 18 May 2019
Posts: 528

Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
28 Oct 2019, 21:49
To find the number of digits in 4^11 * 5^25
4^11=2^22 hence 4^11*5^25=2^22 * 5^22 * 5^3 But 2^22 * 5^22 = (2*5)^22=10^22 Therefore 2^22 * 5^22 * 5^3 = 10^22 * 5^3 but 10^a = a+1 digits So, 10^22 = 22+1 = 23 digits and 5^a = a digits so 5^3 = 3 digits Total digits = 23+3 = 26
The answer is therefore E.



Manager
Joined: 27 Aug 2018
Posts: 93
Location: India
Concentration: Operations, Healthcare
WE: Operations (Health Care)

Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
28 Oct 2019, 23:22
To get the number of digits in any number:
1. Check the number of equal powers of 2's and 5's (i.e, \(2^x\) and \(5^x\)). The powers should be same. 2. The remaining prime factors (including additional powers of 2 or 5 left out) should be multiplied to get a number. 3. Add the number of 0's from (1) and number of digits of the number from (2) to get the desired result.
(4^11)(5^25) can be written as (2^22)(5^25).
Step 1: The common powers of 2 and 5 are (2^22) and (5^22). This gives us 22 zeros Step 2: The remaining prime factors and its powers are (5^3) = 125 which is 3 digits.
Step 3: Add no. of digits from 1 and 2  (22+3 = 25)
Therefore, the answer is D 25.



Intern
Joined: 21 Sep 2016
Posts: 21

Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
29 Oct 2019, 00:18
4^11 x 5^25 = 2^22 x 5^25 (arranging 2s and 5s.....) = 10^22 x 5^3 (.....to get 10s) = 125 x 10^22
10^22 has 23 digits and multiplying it by 125 will add 2 digits more.
The factors will not add more digits as we have already merged 2s and 5s to 10s. In such questions we need to take care if the multiplication will add more digits, for e.g. 3 x 3 will yield a single digit number only whereas 3 x 5 will yield a double digit number.
Therefore, answer is 25.
Posted from my mobile device



Intern
Joined: 30 Nov 2017
Posts: 47

Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
29 Oct 2019, 00:25
125 followed by 22 zeros: Total: 25 digits



Senior Manager
Joined: 07 Mar 2019
Posts: 434
Location: India
WE: Sales (Energy and Utilities)

Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
29 Oct 2019, 00:34
The number of digits in the number \((4^11)(5^25) = ?\) (A) 22 (B) 23 (C) 24 (D) 25 (E) 26 \((4^{11})(5^{25})\) = \(((2^2)^{11})(5^{25})\) \((2^{22})(5^{25})\) \((2^{22})(5^{22})(5^3)\) \((10^{22})(5^3)\) 22 + 3 = 25 digits Answer D.
_________________
Ephemeral Epiphany..!
GMATPREP1 590(Q48,V23) March 6, 2019 GMATPREP2 610(Q44,V29) June 10, 2019 GMATPREPSoft1 680(Q48,V35) June 26, 2019



Senior Manager
Joined: 25 Jul 2018
Posts: 386

Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
29 Oct 2019, 00:38
\(4^{11}*5^{25}\)= \(2^{22}*5^{25}\)=
\(5^{3}*5^{22}*2^{22}\)= \(5^{3}*10^{22}\)
—> \(5^{3}\)= 125 is greater than \(10^{2}\), but less than \(10^{3}\).
—> well, \(125*10^{22}\)= approximately greater than \(10^{24}\), but cannot be equal to \(10^{25}\).
—> \(10^{24}\) — the number of digits in the number is 25
The answer is D
Posted from my mobile device



Intern
Joined: 29 Oct 2019
Posts: 1

Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
29 Oct 2019, 04:44
(4^11) (5^25) can be broken into (4^11) * (5^22) * (5^3)
4 * (5^2) = 100, which means with 4^11 and 5^22 we get 100^11 and the remaining 5^3 = 125. 1st part: 100^11 or 10^22 (22 zeros) 2nd part: 125(3 digits) So, the number is 125 * 10^22 and the answer is D) 25



Intern
Joined: 15 Aug 2017
Posts: 24

Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
29 Oct 2019, 06:36
The number of digits in the number \((4^{11})(5^{25})=?\)
\(4^{11} = (2^2)^{11} = 2^{22}\)
This means there are 22 \((5 * 2)\) pairs, leave \(5^3\)
\(5^3 = 125\), 3 digits plus the 22 digits in the 5*2 pair equates to 25 digits
IMO D



VP
Joined: 20 Jul 2017
Posts: 1140
Location: India
Concentration: Entrepreneurship, Marketing
WE: Education (Education)

Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
29 Oct 2019, 06:51
4^11*5^25 = 2^22*5^25 = (2*5)^22*5^3 = 125*10^22
Number of digits = 3 + 22 = 25
IMO Option D
Posted from my mobile device



Board of Directors
Status: QA & VA Forum Moderator
Joined: 11 Jun 2011
Posts: 4834
Location: India
GPA: 3.5
WE: Business Development (Commercial Banking)

Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
29 Oct 2019, 07:42
\(4^{11}*5^{25}\) \(= 2^{22}*5^{25}\) \(= 2^{22}*5^{22}*5^3\) \(= 10^{22}*5^3\) 10^22  Will have 22 digits 5^3 = 125 , Will have 3 digits SO, We have 22 + 3 = 25 Digits, Answer must be (D) 25
_________________



Intern
Joined: 30 Sep 2017
Posts: 14

Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
29 Oct 2019, 07:48
Digit with highest power becomes the base number. Other digits with their respective powers are not going to mutate the base number length.
Max(11,25) + 1 = 26



Director
Joined: 29 Jun 2017
Posts: 927

Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
29 Oct 2019, 08:08
= 2^22 *5^22 * 5^3 = 625*10^22 answer is d



GMAT Club Legend
Joined: 18 Aug 2017
Posts: 5436
Location: India
Concentration: Sustainability, Marketing
GPA: 4
WE: Marketing (Energy and Utilities)

Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
29 Oct 2019, 08:35
((4^11)(5^25) can be solveed 4^11*5^11*5^13 20^11*5^13 2^11*10^11*5^13 10^11 * 10^11 * 5^2 10^22 * 5^2 so we have 1 ; 1 ; 0 ; 22 ; 2 ; 1 and 5; 1 total 1+22+1+1 = 25 digits IMO D
The number of digits in the number ((4^11)(5^25)= ?
(A) 22 (B) 23 (C) 24 (D) 25 (E) 26



Senior Manager
Joined: 21 Jun 2017
Posts: 327
Location: India
Concentration: Finance, Economics
GPA: 3
WE: Corporate Finance (Commercial Banking)

Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
29 Oct 2019, 08:59
D 25 > 2^22*5^22*5^3 = 10^22* 5^3 = 125* 10^22 . So we have 22 zeros and thre digits in 125 . Total digits = 3 + 22 = 25.



Manager
Joined: 17 Mar 2019
Posts: 104

Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
29 Oct 2019, 10:58
The number of digits in the number (411)(525)= ?
(A) 22 (B) 23 (C) 24 (D) 25 (E) 26
211. 211. 525= (2^11 *5^11) * (2^11 *5^11)* 5^3= 10^11*10^11*125= 10^22*125
=25 DIGITS.
IMO D



Senior Manager
Joined: 29 Jun 2019
Posts: 470

Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
29 Oct 2019, 14:33
2²² × 5²² × 5³= 10²² ×5³= 125×10²² 3+22=25 Option D Posted from my mobile device
_________________



Manager
Joined: 11 Feb 2013
Posts: 229
Location: United States (TX)
GMAT 1: 490 Q44 V15 GMAT 2: 690 Q47 V38
GPA: 3.05
WE: Analyst (Commercial Banking)

Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
Show Tags
29 Oct 2019, 19:09
My answer: D
2^22 *5^22*5^3 =5^3*10^22 =125 and 22 zeros. So, total 25 digits.




Re: The number of digits in the number (4^11)(5^25) = ?
[#permalink]
29 Oct 2019, 19:09






