Last visit was: 13 Dec 2024, 03:40 It is currently 13 Dec 2024, 03:40
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
avatar
RJAGmat
Joined: 29 Sep 2009
Last visit: 27 Oct 2009
Posts: 3
Own Kudos:
4
 []
Concentration: General
Schools:ISB, Wharton
 Q50  V35
Posts: 3
Kudos: 4
 []
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
User avatar
jax91
Joined: 02 Jan 2009
Last visit: 19 Jun 2011
Posts: 50
Own Kudos:
155
 []
Given Kudos: 6
Location: India
Concentration: General
Schools:LBS
Posts: 50
Kudos: 155
 []
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
hussi9
Joined: 28 Mar 2010
Last visit: 05 Mar 2020
Posts: 128
Own Kudos:
Given Kudos: 25
Status:GMAT in 4 weeks
GPA: 3.89
Posts: 128
Kudos: 484
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
ShashankDave
Joined: 03 Apr 2013
Last visit: 26 Jan 2020
Posts: 221
Own Kudos:
Given Kudos: 872
Location: India
Concentration: Marketing, Finance
GMAT 1: 740 Q50 V41
GPA: 3
GMAT 1: 740 Q50 V41
Posts: 221
Kudos: 263
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hey please provide the OA so it can be confirmed.
User avatar
ShashankDave
Joined: 03 Apr 2013
Last visit: 26 Jan 2020
Posts: 221
Own Kudos:
263
 []
Given Kudos: 872
Location: India
Concentration: Marketing, Finance
GMAT 1: 740 Q50 V41
GPA: 3
GMAT 1: 740 Q50 V41
Posts: 221
Kudos: 263
 []
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
jax91
RJAGmat
There are 8 red chips and 2 blue ones.
When arranged in a row, they form a certain color pattern, for example RRBRRBRRRR. How many different color patterns are possible?

We can ignore the red chips.

To place 2 blue chips in 10 slots we get -> 10P2 = 10!/(10-2)! = 10!/8! = 10x9 = 90

Further we need to divide this by 2 as the formula considers both the blue chips to be unique, which they are not.

So 45.

Hi jax91, I did this earlier but I think it is wrong. :)
Consider this point, You are dividing the permutations by half because of arrangements of these kinds:-
BBRRRRRRRR AND RRRRRRRRBB . These color patterns are the same.
But there will be some arrangements which will be palindromes, such as:-
BRRRRRRRRB and these will not come twice because which Blue pack is kept at the first and the last position doesn't matter. This will be true for the Blue packs coming at the following positions -> (1,10), (2,8), (3,7), (4,6) and (5,5). So, a total of 5 palindromes.
Here is how I then solved the question,
Case 1 - Palindromes :-
As said earlier, a total of 5.

Case 2 - Number of permutations in which the chips are not equidistant from each other :-
In this case you have to first consider the 10 available places made of 5 left and 5 right positions. Now, the side selected, whether left or right doesn't matter for the following example as the reason -> BB placed at (1,2) positions is same as when placed at (9,10) positions. This case has two sub-cases as follows :-
1. When both of the Blues are placed in the first or last five positions :-
5C2 = 10. (Thus, this case considers the following arrangements as the same -> BBRRRRRRRR and RRRRRRRRBB).
2. When one is placed in the left/right half and the other in the right/left half (Note: at differently distant positions) :-
(5C1 X 4C1)/2 = 10.
Divided by 2 as arrangements such as these are the same -> RBRRRRRRRB and BRRRRRRRBR .
This gives us a total of 5+10+10 = 25 color patterns.
I hope its right. Please point out any mistakes. :-D
And dont forget to Give me Some Kudos! :wink: :-D
User avatar
jps245
Joined: 07 Oct 2013
Last visit: 27 Jul 2023
Posts: 20
Own Kudos:
34
 []
Given Kudos: 266
GMAT 1: 770 Q50 V45 (Online)
GRE 1: Q167 V170
GMAT 1: 770 Q50 V45 (Online)
GRE 1: Q167 V170
Posts: 20
Kudos: 34
 []
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Good question.
Instead of thinking of the red and blue chips as being the choices, think of the ten slots as being 10 different items (example 1 to 10)
We need to choose two slots for the blue chips (remaining go to red). and the order the slots are picked doesn't matter (for example, picking slot 1 and 2 is the same as picking 2 and 1, for the blue chips)

this leaves us with a problem that involves choosing two slots out of ten choices, and since order doesn't matter, we have 10C2 (instead of 10P2)
{note: I think this becomes a much easier problem to understand after you recognize that its a combinations problem with slots instead of permutations with chips, though either way isn't too difficult}
10! / (8!2!) = 45
User avatar
jps245
Joined: 07 Oct 2013
Last visit: 27 Jul 2023
Posts: 20
Own Kudos:
Given Kudos: 266
GMAT 1: 770 Q50 V45 (Online)
GRE 1: Q167 V170
GMAT 1: 770 Q50 V45 (Online)
GRE 1: Q167 V170
Posts: 20
Kudos: 34
Kudos
Add Kudos
Bookmarks
Bookmark this Post
one other way of doing this:
again take the slots 1 to 10. the blues have to be in two slots. fix the first blue at one and go down the list
(1,2) , (1,3) .... (1,10) = 9 instances
then start at 2
(2,3) , (2,4).....(2,10) = 8 instances

this continues all the way to one. you have a total of 9 + 8 ...+1 = 45 instances, or (n) (n+1) / 2 = 9*10 / 2 = 45 {for sum 1 to n}
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 13 Dec 2024
Posts: 97,865
Own Kudos:
685,468
 []
Given Kudos: 88,266
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,865
Kudos: 685,468
 []
1
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
RJAGmat
There are 8 red chips and 2 blue ones. When arranged in a row, they form a certain color pattern, for example RRBRRBRRRR. How many different color patterns are possible?

THEORY:

Permutations of \(n\) things of which \(P_1\) are alike of one kind, \(P_2\) are alike of second kind, \(P_3\) are alike of third kind ... \(P_r\) are alike of \(r_{th}\) kind such that: \(P_1+P_2+P_3+..+P_r=n\) is:

\(\frac{n!}{P_1!*P_2!*P_3!*...*P_r!}\).

For example number of permutation of the letters of the word "gmatclub" is 8! as there are 8 DISTINCT letters in this word.

Number of permutation of the letters of the word "google" is \(\frac{6!}{2!2!}\), as there are 6 letters out of which "g" and "o" are represented twice.

Number of permutation of 9 balls out of which 4 are red, 3 green and 2 blue, would be \(\frac{9!}{4!3!2!}\).

Back to the original questions:

There are 8 red chips and 2 blue ones. When arranged in a row, they form a certain color pattern, for example RRBRRBRRRR. How many different color patterns are possible?

According to the above 8 red chips and 2 blue chips can be arranged in 10!/(8!2!)=45 ways.

Hope this helps.
User avatar
jps245
Joined: 07 Oct 2013
Last visit: 27 Jul 2023
Posts: 20
Own Kudos:
Given Kudos: 266
GMAT 1: 770 Q50 V45 (Online)
GRE 1: Q167 V170
GMAT 1: 770 Q50 V45 (Online)
GRE 1: Q167 V170
Posts: 20
Kudos: 34
Kudos
Add Kudos
Bookmarks
Bookmark this Post
right, forgot about the exact permutuations formula, so i started working with slots instead of chips.

now that i see the formula you posted, using chips and permutations appears way simpler than switching the problem to slots and combinations, though in this case both lead you to the exact same calculation and answer (because there's only two different types in the entire range of values - you either have \(\frac{n!}{P_1! P_2!}\)for permutations of chips, or\(\frac{n!}{(n-p)!(p)!}\) for combinations of slot choices, which both lead you to \(\frac{10!}{8!2!}\) = 45)

the alternate way i posted could be used if you didn't know the permutuations or combinations formula and had to just use brute force by trying scenarios
User avatar
Amateur
Joined: 05 Nov 2012
Last visit: 17 Nov 2015
Posts: 117
Own Kudos:
Given Kudos: 57
Posts: 117
Kudos: 115
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
RJAGmat
There are 8 red chips and 2 blue ones. When arranged in a row, they form a certain color pattern, for example RRBRRBRRRR. How many different color patterns are possible?

THEORY:

Permutations of \(n\) things of which \(P_1\) are alike of one kind, \(P_2\) are alike of second kind, \(P_3\) are alike of third kind ... \(P_r\) are alike of \(r_{th}\) kind such that: \(P_1+P_2+P_3+..+P_r=n\) is:

\(\frac{n!}{P_1!*P_2!*P_3!*...*P_r!}\).

For example number of permutation of the letters of the word "gmatclub" is 8! as there are 8 DISTINCT letters in this word.

Number of permutation of the letters of the word "google" is \(\frac{6!}{2!2!}\), as there are 6 letters out of which "g" and "o" are represented twice.

Number of permutation of 9 balls out of which 4 are red, 3 green and 2 blue, would be \(\frac{9!}{4!3!2!}\).

Back to the original questions:

There are 8 red chips and 2 blue ones. When arranged in a row, they form a certain color pattern, for example RRBRRBRRRR. How many different color patterns are possible?

According to the above 8 red chips and 2 blue chips can be arranged in 10!/(8!2!)=45 ways.

Hope this helps.
Bunuel, I knew this earlier but can you pls explain how to proceed if the same are not arranged in a row but in a circular way? Thank you
User avatar
jlgdr
Joined: 06 Sep 2013
Last visit: 24 Jul 2015
Posts: 1,328
Own Kudos:
2,571
 []
Given Kudos: 355
Concentration: Finance
Posts: 1,328
Kudos: 2,571
 []
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
RJAGmat
There are 8 red chips and 2 blue ones. When arranged in a row, they form a certain color pattern, for example RRBRRBRRRR. How many different color patterns are possible?

Using anagram grids
Basically 10!/8!2!

Since 8 red are the same as well as 2 blue

So answer gives 45

Hope it helps
Cheers!
J :)
User avatar
SVaidyaraman
Joined: 17 Dec 2012
Last visit: 20 Aug 2024
Posts: 581
Own Kudos:
Given Kudos: 20
Location: India
Expert reply
Posts: 581
Kudos: 1,642
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Take 1 case: BBRRRRRRRR
The right B can move 9 positions. When Left B shifts by 1 position to the right, the right B can move 8 positions, and so as left B keeps shifting, the right B can move 7,6,5,4,3,2,1 positions.
So the total number of arrangements is 9+8+7+6+5+4+3+2+1=45
User avatar
chetan2u
User avatar
RC & DI Moderator
Joined: 02 Aug 2009
Last visit: 12 Dec 2024
Posts: 11,434
Own Kudos:
Given Kudos: 333
Status:Math and DI Expert
Products:
Expert reply
Posts: 11,434
Kudos: 38,011
Kudos
Add Kudos
Bookmarks
Bookmark this Post
RJAGmat
There are 8 red chips and 2 blue ones. When arranged in a row, they form a certain color pattern, for example RRBRRBRRRR. How many different color patterns are possible?


Hi,

the Q can be rephrased "in 10 places for 8R and 2B, choose two places for Blue"..
we can choose 2 places for blue in 10C2, combinations as both blue are same and all red are same..
\(10C2= \frac{10!}{{8!2!}}= 10*\frac{9}{2}=45\)
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 35,804
Own Kudos:
Posts: 35,804
Kudos: 929
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderator:
Math Expert
97864 posts