GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 22 Oct 2019, 10:15

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

When positive integer n is divided by 5, the remainder is 1. When n is

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58426
When positive integer n is divided by 5, the remainder is 1. When n is  [#permalink]

Show Tags

New post Updated on: 01 Nov 2018, 03:16
9
53
00:00
A
B
C
D
E

Difficulty:

  15% (low)

Question Stats:

80% (02:01) correct 20% (02:22) wrong based on 1831 sessions

HideShow timer Statistics

When positive integer n is divided by 5, the remainder is 1. When n is divided by 7, the remainder is 3. What is the smallest positive integer k such that k + n is a multiple of 35 ?

(A) 3
(B) 4
(C) 12
(D) 32
(E) 35


Problem Solving
Question: 68
Category: Arithmetic Properties of numbers
Page: 70
Difficulty: 650


The Official Guide For GMAT® Quantitative Review, 2ND Edition

Originally posted by Bunuel on 03 Jan 2010, 16:00.
Last edited by Bunuel on 01 Nov 2018, 03:16, edited 4 times in total.
Edited the question and added the OA
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58426
When positive integer n is divided by 5, the remainder is 1. When n is  [#permalink]

Show Tags

New post 30 Jan 2014, 01:51
11
67
SOLUTION

When positive integer n is divided by 5, the remainder is 1. When n is divided by 7, the remainder is 3. What is the smallest positive integer k such that k + n is a multiple of 35 ?

(A) 3
(B) 4
(C) 12
(D) 32
(E) 35

Positive integer n is divided by 5, the remainder is 1 --> \(n=5q+1\), where \(q\) is the quotient --> 1, 6, 11, 16, 21, 26, 31, ...
Positive integer n is divided by 7, the remainder is 3 --> \(n=7p+3\), where \(p\) is the quotient --> 3, 10, 17, 24, 31, ....

There is a way to derive general formula for \(n\) (of a type \(n=mx+r\), where \(x\) is divisor and \(r\) is a remainder) based on above two statements:

Divisor \(x\) would be the least common multiple of above two divisors 5 and 7, hence \(x=35\).

Remainder \(r\) would be the first common integer in above two patterns, hence \(r=31\).

Therefore general formula based on both statements is \(n=35m+31\). Thus the smallest positive integer k such that k+n is a multiple of 35 is 4 --> \(n+4=35k+31+4=35(k+1)\).

Answer: B.

More about deriving general formula for such problems at: http://gmatclub.com/forum/manhattan-rem ... ml#p721341
_________________
Most Helpful Community Reply
Intern
Intern
avatar
Joined: 20 Dec 2009
Posts: 10
Re: When positive integer n is divided by 5, the remainder is 1. When n is  [#permalink]

Show Tags

New post 05 Jan 2010, 05:31
31
15
kp1811 wrote:
Pedros wrote:
When positive integer n is divided by 5, the remainder is 1. When n is divided by 7, the remainder is 3. What is the smallest positive integer k such that
k+ n is a multiple of 35.
A) 3
B) 4
C) 12
D) 32
E) 35

Dont want to try numbers in any remainder problem , please hlep.


OA


here n is divided by 5 and 7 and remainders are 1 and 3. There is a rule wherein if the difference b/w and remainder is same then the number of obtained from LCM of 2 (here 2) numbers and the constant difference.

Here constant difference is 5-1 = 4 and 7-3 = 4
so the required number if of the form A(LCM of 5 and 7) - constant difference = 35A - 4

So to obtain a multiple of 35 we would need to add 4 to 35A - 4.
Hence B - 4


The rule is good to solve such problems but sometime we may just solve GMAT problems simply by observation. In this case we see that number n leaves a remainder 1 from 5 so if we add 4 to n, then the number will be divisible by 5.
Similarly, the number n leaves remainder of 3 from 7, again adding 4 to n makes it divisible by 7. So in both the cases adding 4 makes the number n divisible by both 5 and 7 and hence it should also be divisible by LCM of 5,7 i.e.35. So 4 is the answer.
It is better to remember the rule but just in case you don't then simply observe.
Thanks!
General Discussion
Manager
Manager
avatar
Joined: 30 Aug 2009
Posts: 220
Location: India
Concentration: General Management
Re: When positive integer n is divided by 5, the remainder is 1. When n is  [#permalink]

Show Tags

New post 03 Jan 2010, 20:17
11
11
Pedros wrote:
When positive integer n is divided by 5, the remainder is 1. When n is divided by 7, the remainder is 3. What is the smallest positive integer k such that
k+ n is a multiple of 35.
A) 3
B) 4
C) 12
D) 32
E) 35

Dont want to try numbers in any remainder problem , please hlep.


OA


here n is divided by 5 and 7 and remainders are 1 and 3. There is a rule wherein if the difference b/w and remainder is same then the number of obtained from LCM of 2 (here 2) numbers and the constant difference.

Here constant difference is 5-1 = 4 and 7-3 = 4
so the required number if of the form A(LCM of 5 and 7) - constant difference = 35A - 4

So to obtain a multiple of 35 we would need to add 4 to 35A - 4.
Hence B - 4
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58426
When positive integer n is divided by 5, the remainder is 1. When n is  [#permalink]

Show Tags

New post 09 May 2010, 15:35
13
36

5. Divisibility/Multiples/Factors



For other subjects:
ALL YOU NEED FOR QUANT ! ! !
Ultimate GMAT Quantitative Megathread
_________________
Veritas Prep GMAT Instructor
User avatar
V
Joined: 16 Oct 2010
Posts: 9701
Location: Pune, India
Re: When positive integer n is divided by 5, the remainder is 1. When n is  [#permalink]

Show Tags

New post 07 Nov 2010, 20:24
16
16
First, let us say I have a number n which is divisible by 5 and by 7. We all agree that it will be divisible by 35, the LCM of 5 and 7.

Now, if I have a number n which when divided by 5 gives a remainder 1 and when divided by 7 gives a remainder 1, we can say the number is of the form
n = 5a + 1 e.g. 5 + 1, 10 + 1, 15 + 1, 20 + 1, 25 + 1, 30 + 1, 35 + 1 etc
and
n = 7b + 1 e.g. 7 + 1, 14 + 1, 21 + 1, 28 + 1, 35 + 1 etc
So when it is divided by the LCM, 35, it will give 1 as remainder (as is apparent above)

Next, if I have a number n which when divided by 5 gives a remainder 1 and when divided by 7 gives a remainder 3, we can say the number is of the form
n = 5a + 1
and
n = 7b + 3
Now, the only thing you should try to understand here is that when n is divided by 5 and if I say the remainder is 1, it is the same as saying the remainder is -4. e.g. When 6 is divided by 5, remainder is 1 because it is 1 more than a multiple of 5. I can also say it is 4 less than the next multiple of 5, can't I? 6 is one more than 5, but 4 less than 10.
Therefore, we can say n = 5x - 4 and n = 7y - 4 (A remainder of 3 when divided by 7 is the same as getting a remainder of -4)
Now this question is exactly like the question above. So when you divide n by 35, remainder will be -4 i.e. n will be 4 less than a multiple of 35. So you must add 4 to n to make it a multiple of 35

A trickier version is: If I have a number n which when divided by 5 gives a remainder 1 and when divided by 7 gives a remainder 5, what is the remainder when n is divided by 35?
n = 5a + 1 = 5x - 4
n = 7b + 5 = 7y -2
Nothing common! Now, I will need to check for the smallest such number.
I put b = 1. n = 12. Is it of the form 5a + 1? No.
Put b = 2. n = 19. Is it of the form 5a + 1? No.
Put b = 3. n = 26. Is it of the form 5a + 1? Yes.
When 26 is divided by 5, it gives a remainder of 1. When it is divided by 7, it gives a remainder if 5.
Next such number will be 35 + 26.
Next will be 35*2 + 26
and so on...
The remainder when n is divided by 35 will be 26 (or we can say it will be -9). If we want to find the number that must be added to n to make it divisible by 35, that number will be 9.
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Director
Director
User avatar
Joined: 25 Apr 2012
Posts: 660
Location: India
GPA: 3.21
WE: Business Development (Other)
Reviews Badge
Re: When positive integer n is divided by 5, the remainder is 1. When n is  [#permalink]

Show Tags

New post 30 Jan 2014, 03:07
5
1
When positive integer n is divided by 5, the remainder is 1. When n is divided by 7, the remainder is 3. What is the smallest positive integer k such that k + n is a multiple of 35 ?

(A) 3
(B) 4
(C) 12
(D) 32
(E) 35


Sol: Given n=5a+1 where a is any non-negative integer and also n=7b+3 where b is any non-negative integer.....so n is of the form

Possible values of n in case 1 : 1,6,11,16,21,26,31....
Possible value of n in case 2 : 3,10,17, 24,31...

So, n=35C+ 31....Now for K+ n to be multiple of 35 K needs to be 4 so that k+n = 35C+31+4 or 35(c+1)

Ans B.

650 level is okay
_________________

“If you can't fly then run, if you can't run then walk, if you can't walk then crawl, but whatever you do you have to keep moving forward.”
Manager
Manager
avatar
Joined: 04 Oct 2013
Posts: 150
Location: India
GMAT Date: 05-23-2015
GPA: 3.45
GMAT ToolKit User Reviews Badge
Re: When positive integer n is divided by 5, the remainder is 1. When n is  [#permalink]

Show Tags

New post Updated on: 29 Jan 2015, 22:26
5
1
6
When positive integer n is divided by 5, the remainder is 1. When n is divided by 7, the remainder is 3. What is the smallest positive integer k such that k + n is a multiple of 35 ?

(A) 3
(B) 4
(C) 12
(D) 32
(E) 35


Method 1

n is divided by 5, the remainder is 1 ---> \(n= 5x + 1\)
or, n + k = 5x + (1 + k)
So, n + k is divisible by 5, when (1+ k) is a multiple of 5.
Or, Possible values of k are 4, 9, 14,19, 24, 29, 33,.....

n is divided by 7, the remainder is 3 ----> \(n=7y + 3\)
Or, n + k = 7y +(3 + k)
So, n + k is divisible by 7, when (3+ k) is a multiple of 7.
Or, Possible values of k are 4, 11, 18, 25, 32, 39,.....

As the lowest common value is 4, the answer is (B).

Originally posted by arunspanda on 31 Jan 2014, 10:06.
Last edited by arunspanda on 29 Jan 2015, 22:26, edited 1 time in total.
SVP
SVP
User avatar
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1747
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)
Re: When positive integer n is divided by 5, the remainder is 1. When n is  [#permalink]

Show Tags

New post 02 Oct 2014, 03:10
4
2
Picked up 7 & added 3 = 10

10 gives a remainder 3 when divided by 7

Wrote down similar numbers. We are looking for numbers which would either end by 1 or 6 (so they would provide a remainder 1 when divided by 5)

10
17
24
31 ........ stop

31 is the number when divided by 5, provides remainder 1 (Its already tested that it provides remainder 3 when divided by 7)

First available multiple of 35 is 35, which is just 4 away from 31

Answer = 4
_________________
Kindly press "+1 Kudos" to appreciate :)
Senior Manager
Senior Manager
User avatar
B
Joined: 10 Mar 2013
Posts: 465
Location: Germany
Concentration: Finance, Entrepreneurship
Schools: WHU MBA"20 (A)
GMAT 1: 580 Q46 V24
GPA: 3.88
WE: Information Technology (Consulting)
GMAT ToolKit User
Re: When positive integer n is divided by 5, the remainder is 1. When n is  [#permalink]

Show Tags

New post 26 Aug 2015, 14:41
2
1
Hi all, actually we don't need pluging all those values for x,y...
n=5x+1 and n=7y+3 --> n+k=> (5x+1+k)/35 so 1+k must be a multiple of 5 if we want this expression to yield an integer so k=4
Use same logic here (7y+3+k)/35 -> 3+k must be a multiple of 7, so k=4
_________________
When you’re up, your friends know who you are. When you’re down, you know who your friends are.

Share some Kudos, if my posts help you. Thank you !

800Score ONLY QUANT CAT1 51, CAT2 50, CAT3 50
GMAT PREP 670
MGMAT CAT 630
KAPLAN CAT 660
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2815
Re: When positive integer n is divided by 5, the remainder is 1. When n is  [#permalink]

Show Tags

New post 03 Aug 2016, 09:45
2
Quote:
When positive integer n is divided by 5, the remainder is 1. When n is divided by 7, the remainder is 3. What is the smallest positive integer k such that k + n is a multiple of 35 ?

(A) 3
(B) 4
(C) 12
(D) 32
(E) 35


We can find the value of n first by just strategically find values that when divided by 5 have a reminder of 1. For example, since the remainder is 1 when n is divided by 5, n will be a [(multiple of 5) + 1] and thus must be one of the following numbers:

1, 6, 11, 16, 21, 26, 31, …

Now we have to find out which of these numbers when divided by 7, have a remainder of 3.

1/7 = 0 remainder 1

6/7 = 0 remainder 6

11/7 = 0 remainder 6

6/7 = 1 remainder 4

16/7 = 2 remainder 2

21/7 = 3 remainder 0

26/7 = 3 remainder 5

31/7 = 4 remainder 3

We can see that 31 is the smallest value of n that satisfies the requirement. So we must determine the value of k such that k + n is a multiple of 35. Obviously, since 4 + 31 = 35 and 35 is a multiple of 35, then the smallest positive integer value of k is 4.

Answer: B
_________________

Jeffrey Miller

Head of GMAT Instruction

Jeff@TargetTestPrep.com
TTP - Target Test Prep Logo
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

GMAT Club Legend
GMAT Club Legend
User avatar
V
Joined: 12 Sep 2015
Posts: 4017
Location: Canada
Re: When positive integer n is divided by 5, the remainder is 1. When n is  [#permalink]

Show Tags

New post 30 Nov 2017, 11:30
1
Top Contributor
1
Bunuel wrote:
When positive integer n is divided by 5, the remainder is 1. When n is divided by 7, the remainder is 3. What is the smallest positive integer k such that k + n is a multiple of 35 ?

(A) 3
(B) 4
(C) 12
(D) 32
(E) 35


There's a nice rule that says, If, when N is divided by D, the remainder is R, then the possible values of N include: R, R+D, R+2D, R+3D,. . .
For example, if k divided by 6 leaves a remainder of 2, then the possible values of k are: 2, 2+6, 2+(2)(6), 2+(3)(6), 2+(4)(6), . . . etc.

When n is divided by 5, the remainder is 1.
So, possible values of n are 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, etc.

When n is divided by 7, the remainder is 3.
So, possible values of n are 3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, etc.

So, we can see that n could equal 31, or 66, or an infinite number of other values.

Important: Since the Least Common Multiple of 7 and 5 is 35, we can conclude that if we list the possible values of n, each value will be 35 greater than the last value.
So, n could equal 31, 66, 101, 136, and so on.

Check the answer choices....

Answer choice A: If we add 3 to any of these possible n-values, the sum is NOT a multiple of 35.
ELIMINATE A

Answer choice B: if we take ANY of these possible n-values, and add 4, the sum will be a multiple of 35.

So, the smallest value of k is 4 such that k+n is a multiple of 35.

Answer = B

RELATED VIDEO FROM OUR COURSE

_________________
Test confidently with gmatprepnow.com
Image
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 13409
Re: When positive integer n is divided by 5, the remainder is 1. When n is  [#permalink]

Show Tags

New post 02 Dec 2018, 17:28
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Bot
Re: When positive integer n is divided by 5, the remainder is 1. When n is   [#permalink] 02 Dec 2018, 17:28
Display posts from previous: Sort by

When positive integer n is divided by 5, the remainder is 1. When n is

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne