Author 
Message 
TAGS:

Hide Tags

Manager
Joined: 29 Oct 2009
Posts: 204

Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
Updated on: 21 Dec 2009, 05:24
188
This post received KUDOS
333
This post was BOOKMARKED
Hi guys, This is in conjunction with another post which has questions dealing with remainders ( collectionofremainderproblemsingmat74776.html). I'm just trying to put together a list of tips and tricks which we can use to solve these kind of problems with greater accuracy and speed. Please feel free to comment and make suggestions. Hopefully we can add onto this list and cover all sorts of strategies that would help us deal with remainders! Cheers. Please read this first : 1) Take your time with these points. Some of them might be a little difficult to follow in the first reading, but don't give up. The concepts are fairly simple. 2) These tips if mastered will be extremely valuable in the GMAT to help solve a variety of questions not limited specifically to remainders. I have been using them for quite a while now and they have not only helped me improve my accuracy but also my speed. 3) If you have any doubts, please do not hesitate to ask (no matter how stupid you might think them to be!). If you do not ask, you will never learn. 4) Lastly, have fun while trying to understand these tips and tricks as that, according to me, is the best possible way to learn.
All the best!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx NOTE: Where ever you see R of 'x' it just stands for Remainder of x. 1) The possible remainders when a number is divided by ‘n’ can range from 0 to (n1). Eg. If n=10, possible remainders are 0,1,2,3,4,5,6,7,8 and 9.2) If a number is divided by 10, its remainder is the last digit of that number. If it is divided by 100 then the remainder is the last two digits and so on. This is good for questions such as : ' What is the last digit of.....' or ' What are the last two digits of.....' .3) If a number leaves a remainder ‘r’ (the number is the divisor), all its factors will have the same remainder ‘r’ provided the value of ‘r’ is less than the value of the factor. Eg. If remainder of a number when divided by 21 is 5, then the remainder of that same number when divided by 7 (which is a factor of 21) will also be 5. If the value of ‘r’ is greater than the value of the factor, then we have to take the remainder of ‘r’ divided by the factor to get the remainder. Eg. If remainder of a number when divided by 21 is 5, then the remainder of that same number when divided by 3 (which is a factor of 21) will be remainder of 5/3, which is 2. 4) Cycle of powers : This is used to find the remainder of \(n^x\), when divided by 10, as it helps us in figuring out the last digit of \(n^x\).The cycle of powers for numbers from 2 to 10 is given below: 2: 2, 4, 8, 6 → all \(2^{4x}\) will have the same last digit. 3: 3, 9, 7, 1 → all \(3^{4x}\) will have the same last digit. 4: 4, 6 → all \(4^{2x}\) will have the same last digit. 5: 5 → all \(5^x\) will have the same last digit. 6: 6 → all \(6^x\) will have the same last digit. 7: 7, 9, 3, 1 → all \(7^{4x}\) will have the same last digit. 8: 8, 4, 2, 6 → all \(8^{4x}\) will have the same last digit. 9: 9, 1 → all \(9^{2x}\) will have the same last digit. 10: 0 → all \(10^x\) will have the same last digit. 5) Many seemingly difficult remainder problems can be simplified using the following formula : \(R of \frac{x*y}{n} = R of \frac{(R of \frac{x}{n})*(R of \frac{y}{n})}{n}\) Eg. \(R of \frac{20*27}{25} = R of \frac{(R of \frac{20}{25})*(R of \frac{27}{25})}{25} = R of \frac{(20)*(2)}{25} = R of \frac{40}{25} = 15\)
Eg. \(R of \frac{225}{13} = R of \frac{(15)*(15)}{13} = R of {(2)*(2)}{13} = R of \frac{4}{13} = 4\) 6) \(R of \frac{x*y}{n}\) , can sometimes be easier calculated if we take it as \(R of \frac{(R of \frac{(xn)}{n})*(R of \frac{(yn)}{n})}{n}\) Especially when x and y are both just slightly less than n. This can be easier understood with an example: Eg. \(R of \frac{(19)*(21)}{25} = R of \frac{(6)*(4)}{25} = 24\)
NOTE: Incase the answer comes negative, (if x is less than n but y is greater than n) then we have to simply add the remainder to n. Eg. \(R of \frac{(23)*(27)}{25} = R of \frac{(2)*(2)}{25} = 4.\) Now, since it is negative, we have to add it to 25.\(R = 25 + (4) = 21\) [Note: Go here to practice two good problems where you can use some of these concepts explained : numbers86325.html] 7) If you take the decimal portion of the resulting number when you divide by "n", and multiply it to "n", you will get the remainder. [Special thanks to h2polo for this one] Note: Converse is also true. If you take the remainder of a number when divided by 'n', and divide it by 'n', it will give us the remainder in decimal format. Eg. \(\frac{8}{5} = 1.6\)
In this case, \(0.6 * 5 = 3\)
Therefore, the remainder is \(3\). This is important to understand for problems like the one below: If s and t are positive integer such that s/t=64.12, which of the following could be the remainder when s is divided by t? (A) 2 (B) 4 (C) 8 (D) 20 (E) 45OA :
_________________
Click below to check out some great tips and tricks to help you deal with problems on Remainders! http://gmatclub.com/forum/compilationoftipsandtrickstodealwithremainders86714.html#p651942
Word Problems Made Easy! 1) Translating the English to Math : http://gmatclub.com/forum/wordproblemsmadeeasy87346.html 2) 'Work' Problems Made Easy : http://gmatclub.com/forum/workwordproblemsmadeeasy87357.html 3) 'Distance/Speed/Time' Word Problems Made Easy : http://gmatclub.com/forum/distancespeedtimewordproblemsmadeeasy87481.html
Originally posted by sriharimurthy on 11 Nov 2009, 16:33.
Last edited by sriharimurthy on 21 Dec 2009, 05:24, edited 12 times in total.



Manager
Joined: 13 Aug 2009
Posts: 190

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
14 Nov 2009, 04:20
3
This post received KUDOS
Great post! I suprised no one else has commented on this.
Very useful for having a solid background on tackling remainder problems.



Manager
Joined: 29 Oct 2009
Posts: 204

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
14 Nov 2009, 04:39
12
This post received KUDOS
Thanks h2polo. I was starting to wonder whether anyone was finding this post useful or not. (more than 40 views without a comment before yours!) I hope people will eventually start posting comments and suggestions and add on to the list I've started above. Here's hoping this thread picks up. Cheers.
_________________
Click below to check out some great tips and tricks to help you deal with problems on Remainders! http://gmatclub.com/forum/compilationoftipsandtrickstodealwithremainders86714.html#p651942
Word Problems Made Easy! 1) Translating the English to Math : http://gmatclub.com/forum/wordproblemsmadeeasy87346.html 2) 'Work' Problems Made Easy : http://gmatclub.com/forum/workwordproblemsmadeeasy87357.html 3) 'Distance/Speed/Time' Word Problems Made Easy : http://gmatclub.com/forum/distancespeedtimewordproblemsmadeeasy87481.html



Manager
Joined: 13 Aug 2009
Posts: 190

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
14 Nov 2009, 05:54
13
This post received KUDOS
2
This post was BOOKMARKED
Here is another important property about reminders that everyone should understand:
If you take the decimal portion of the resulting number when you divide by "n", and multiply it to "n", you will get the remainder.
For example, 8/5 = 1.6
.6 * 5 = 3
Therefore, the remainder is 3.
This is important to understand for problems like the one below:
If s and t are positive integer such that s/t=64.12, which of the following could be the remainder when s is divided by t? (A) 2 (B) 4 (C) 8 (D) 20 (E) 45



Manager
Joined: 29 Oct 2009
Posts: 204

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
14 Nov 2009, 06:08
3
This post received KUDOS
h2polo wrote: Here is another important property about reminders that everyone should understand:
If you take the decimal portion of the resulting number when you divide by "n", and multiply it to "n", you will get the remainder.
For example, 8/5 = 1.6
.6 * 5 = 3
Therefore, the remainder is 3.
This is important to understand for problems like the one below:
If s and t are positive integer such that s/t=64.12, which of the following could be the remainder when s is divided by t? (A) 2 (B) 4 (C) 8 (D) 20 (E) 45 Good one h2polo.. Added it to the list. +1 to you!
_________________
Click below to check out some great tips and tricks to help you deal with problems on Remainders! http://gmatclub.com/forum/compilationoftipsandtrickstodealwithremainders86714.html#p651942
Word Problems Made Easy! 1) Translating the English to Math : http://gmatclub.com/forum/wordproblemsmadeeasy87346.html 2) 'Work' Problems Made Easy : http://gmatclub.com/forum/workwordproblemsmadeeasy87357.html 3) 'Distance/Speed/Time' Word Problems Made Easy : http://gmatclub.com/forum/distancespeedtimewordproblemsmadeeasy87481.html



Manager
Joined: 24 Jul 2009
Posts: 70
Location: United States

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
15 Nov 2009, 05:47
If s and t are positive integer such that s/t=64.12, which of the following could be the remainder when s is divided by t? (A) 2 (B) 4 (C) 8 (D) 20 (E) 45 Ans: Using the technique: remainder = 0.12*t => the answer is multiple of 12. but none of the options match...did i miss something or is my understanding wrong



Manager
Joined: 29 Oct 2009
Posts: 204

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
15 Nov 2009, 05:57
5
This post received KUDOS
2
This post was BOOKMARKED
ctrlaltdel wrote: If s and t are positive integer such that s/t=64.12, which of the following could be the remainder when s is divided by t? (A) 2 (B) 4 (C) 8 (D) 20 (E) 45 Ans: Using the technique: remainder = 0.12*t => the answer is multiple of 12. but none of the options match...did i miss something or is my understanding wrong Don't worry. This question is not that straightforward but understanding it will really help you for any other such question. The answer is a multiple of 0.12. However, If we consider it to be a multiple of 12, then we have to multiply each of the answers by 100 and then check. Try working it out now. You should get the answer to be (E). If you face any further difficulties then feel free to ask again!
_________________
Click below to check out some great tips and tricks to help you deal with problems on Remainders! http://gmatclub.com/forum/compilationoftipsandtrickstodealwithremainders86714.html#p651942
Word Problems Made Easy! 1) Translating the English to Math : http://gmatclub.com/forum/wordproblemsmadeeasy87346.html 2) 'Work' Problems Made Easy : http://gmatclub.com/forum/workwordproblemsmadeeasy87357.html 3) 'Distance/Speed/Time' Word Problems Made Easy : http://gmatclub.com/forum/distancespeedtimewordproblemsmadeeasy87481.html



Manager
Joined: 24 Jul 2009
Posts: 70
Location: United States

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
15 Nov 2009, 08:52
Silly mistakes will eat my score for sure Thanks !



Founder
Joined: 04 Dec 2002
Posts: 16812
Location: United States (WA)

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
18 Nov 2009, 18:48
Very very cool  only one suggestion  can we make it mathfriendly? You can use the Mtag  see here for details: questionsaboutposting84537.html
_________________
Founder of GMAT Club
Just starting out with GMAT? Start here... or use our Daily Study Plan
Coauthor of the GMAT Club tests



Manager
Joined: 28 Jul 2009
Posts: 97

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
19 Nov 2009, 01:52
Great thread .. will love to see it updated with more tips and questions .. thanks ..



Intern
Joined: 24 Oct 2009
Posts: 24
Location: Russia
Schools: IESE, SDA Bocconi

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
19 Nov 2009, 02:19
sriharimurthy wrote: ctrlaltdel wrote: If s and t are positive integer such that s/t=64.12, which of the following could be the remainder when s is divided by t? (A) 2 (B) 4 (C) 8 (D) 20 (E) 45 Ans: Using the technique: remainder = 0.12*t => the answer is multiple of 12. but none of the options match...did i miss something or is my understanding wrong Don't worry. This question is not that straightforward but understanding it will really help you for any other such question. The answer is a multiple of 0.12. However, If we consider it to be a multiple of 12, then we have to multiply each of the answers by 100 and then check. Try working it out now. You should get the answer to be (E). If you face any further difficulties then feel free to ask again! Could you, please, explain the solution? I didn't get it. I found out that the remaider is 3; should we just pick up the answer to get multiple of 3?



Manager
Joined: 29 Oct 2009
Posts: 204

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
19 Nov 2009, 02:28
1
This post received KUDOS
bb wrote: Very very cool  only one suggestion  can we make it mathfriendly? You can use the Mtag  see here for details: questionsaboutposting84537.htmlFollowed your suggestion bb. Open to more. Let me know what you think. Cheers.
_________________
Click below to check out some great tips and tricks to help you deal with problems on Remainders! http://gmatclub.com/forum/compilationoftipsandtrickstodealwithremainders86714.html#p651942
Word Problems Made Easy! 1) Translating the English to Math : http://gmatclub.com/forum/wordproblemsmadeeasy87346.html 2) 'Work' Problems Made Easy : http://gmatclub.com/forum/workwordproblemsmadeeasy87357.html 3) 'Distance/Speed/Time' Word Problems Made Easy : http://gmatclub.com/forum/distancespeedtimewordproblemsmadeeasy87481.html



Manager
Joined: 29 Oct 2009
Posts: 204

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
19 Nov 2009, 02:45
6
This post received KUDOS
3
This post was BOOKMARKED
Quote: Could you, please, explain the solution? I didn't get it.
I found out that the remaider is 3; should we just pick up the answer to get multiple of 3?
Hi Shelen, In the question, it is given that s/t = 64.12 Thus, we know that the remainder in decimal format will be 0.12 (Note : Do not make the mistake of considering it to be 12. It is 0.12) Now, we know that the answer should be a multiple of 0.12 since 'the remainder of s/t' will be equal to 'the remainder of s/t in decimal format' multiplied by 't'. That is, R of (s/t) = 0.12*t > which is a multiple of 0.12 for all the positive integer values that 't' can hold. Now, in order to make the calculation simpler, we can multiply both sides of the equation by 100. R*100 = 12*t > t = (R*100)/12 Now, since it is given that 't' is a positive integer, (R*100) has to be perfectly divisible by 12. Thus look through the answer choices to see which one satisfies this condition. You will find that R = 45 will be the only one that satisfies it, since 4500 is perfectly divisible by 12. Therefore answer is choice (E) which is 45.
_________________
Click below to check out some great tips and tricks to help you deal with problems on Remainders! http://gmatclub.com/forum/compilationoftipsandtrickstodealwithremainders86714.html#p651942
Word Problems Made Easy! 1) Translating the English to Math : http://gmatclub.com/forum/wordproblemsmadeeasy87346.html 2) 'Work' Problems Made Easy : http://gmatclub.com/forum/workwordproblemsmadeeasy87357.html 3) 'Distance/Speed/Time' Word Problems Made Easy : http://gmatclub.com/forum/distancespeedtimewordproblemsmadeeasy87481.html



Intern
Joined: 24 Oct 2009
Posts: 24
Location: Russia
Schools: IESE, SDA Bocconi

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
19 Nov 2009, 03:37
sriharimurthy wrote: Quote: Could you, please, explain the solution? I didn't get it.
I found out that the remaider is 3; should we just pick up the answer to get multiple of 3?
Hi Shelen, In the question, it is given that s/t = 64.12 Thus, we know that the remainder in decimal format will be 0.12 (Note : Do not make the mistake of considering it to be 12. It is 0.12) Now, we know that the answer should be a multiple of 0.12 since 'the remainder of s/t' will be equal to 'the remainder of s/t in decimal format' multiplied by 't'. That is, R of (s/t) = 0.12*t > which is a multiple of 0.12 for all the positive integer values that 't' can hold. Now, in order to make the calculation simpler, we can multiply both sides of the equation by 100. R*100 = 12*t > t = (R*100)/12 Now, since it is given that 't' is a positive integer, (R*100) has to be perfectly divisible by 12. Thus look through the answer choices to see which one satisfies this condition. You will find that R = 45 will be the only one that satisfies it, since 4500 is perfectly divisible by 12. Therefore answer is choice (E) which is 45. Oh, my... Thank you!



Intern
Joined: 30 Aug 2009
Posts: 22

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
20 Nov 2009, 01:49
1
This post received KUDOS
Wow, I really like the initial collection. Hope I can keep it all "inside"



Manager
Joined: 13 Oct 2009
Posts: 110
Location: USA
Schools: IU KSB

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
21 Nov 2009, 09:18
Cool Tips n Trick, especially point 5, 6, and 7.



Manager
Joined: 22 Sep 2009
Posts: 206
Location: Tokyo, Japan

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
22 Nov 2009, 00:21
This is great tips for remainder questions. I suggest everyone to read it



Intern
Joined: 18 Nov 2009
Posts: 1

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
24 Nov 2009, 14:15
excellent post  many thanks !



Manager
Joined: 17 Aug 2009
Posts: 211

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
29 Nov 2009, 01:52
Very good post...Really helpful ! Thanks



Manager
Joined: 07 Jul 2009
Posts: 198

Re: Compilation of tips and tricks to deal with remainders. [#permalink]
Show Tags
30 Nov 2009, 12:03
Excellent job sriharimurthy! Very helpful post on remainders. Good initiative.




Re: Compilation of tips and tricks to deal with remainders.
[#permalink]
30 Nov 2009, 12:03



Go to page
1 2 3 4 5 6
Next
[ 104 posts ]



