May 19 07:00 PM EDT  08:00 PM EDT Some of what you'll gain: Strategies and techniques for approaching featured GMAT topics. Sunday May 19th at 7 PM ET May 19 07:00 AM PDT  09:00 AM PDT Get personalized insights on how to achieve your Target Quant Score. Sunday, May 19th at 7 AM PT May 20 10:00 PM PDT  11:00 PM PDT Practice the one most important Quant section  Integer Properties, and rapidly improve your skills. May 24 10:00 PM PDT  11:00 PM PDT Join a FREE 1day workshop and learn how to ace the GMAT while keeping your fulltime job. Limited for the first 99 registrants. May 25 07:00 AM PDT  09:00 AM PDT Attend this webinar and master GMAT SC in 10 days by learning how meaning and logic can help you tackle 700+ level SC questions with ease.
Author 
Message 
TAGS:

Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 55150

If s and t are positive integers such that s/t = 64.12 which
[#permalink]
Show Tags
02 Jul 2012, 02:08
Question Stats:
65% (01:38) correct 35% (02:04) wrong based on 2097 sessions
HideShow timer Statistics
If s and t are positive integers such that s/t = 64.12, which of the following could be the remainder when s is divided by t ? (A) 2 (B) 4 (C) 8 (D) 20 (E) 45 Diagnostic Test Question: 13 Page: 22 Difficulty: 650
Official Answer and Stats are available only to registered users. Register/ Login.
_________________




Math Expert
Joined: 02 Sep 2009
Posts: 55150

Re: If s and t are positive integers such that s/t = 64.12 which
[#permalink]
Show Tags
02 Jul 2012, 02:08
SOLUTIONIf s and t are positive integers such that s/t = 64.12, which of the following could be the remainder when s is divided by t ?(A) 2 (B) 4 (C) 8 (D) 20 (E) 45 \(s\) divided by \(t\) yields the remainder of \(r\) can always be expressed as: \(\frac{s}{t}=q+\frac{r}{t}\) (which is the same as \(s=qt+r\)), where \(q\) is the quotient and \(r\) is the remainder.Given that \(\frac{s}{t}=64.12=64\frac{12}{100}=64\frac{3}{25}=64+\frac{3}{25}\), so according to the above \(\frac{r}{t}=\frac{3}{25}\), which means that \(r\) must be a multiple of 3. Only option E offers answer which is a multiple of 3 Answer. E.
_________________




Senior Manager
Joined: 24 Aug 2009
Posts: 461
Schools: Harvard, Columbia, Stern, Booth, LSB,

If s and t are positive integers such that s/t = 64.12 which
[#permalink]
Show Tags
18 Aug 2012, 05:50
Shortcut for this question: 64.12 = 64 + 12/100 Now focus on remainder part which is 12/100= 3/25 Because 3 represents some fraction (ratio) of remainder , the remainder must be a multiple of 3. only 45 is a multiple of 3. Time taken app20sec Waiting for few kudos
_________________
If you like my Question/Explanation or the contribution, Kindly appreciate by pressing KUDOS. Kudos always maximizes GMATCLUB worth Game Theory
If you have any question regarding my post, kindly pm me or else I won't be able to reply




Director
Joined: 22 Mar 2011
Posts: 599
WE: Science (Education)

Re: If s and t are positive integers such that s/t = 64.12 which
[#permalink]
Show Tags
02 Jul 2012, 02:27
Bunuel wrote: The Official Guide for GMAT® Review, 13th Edition  Quantitative Questions ProjectIf s and t are positive integers such that s/t = 64.12, which of the following could be the remainder when s is divided by t ? (A) 2 (B) 4 (C) 8 (D) 20 (E) 45 Diagnostic Test Question: 13 Page: 22 Difficulty: 650 GMAT Club is introducing a new project: The Official Guide for GMAT® Review, 13th Edition  Quantitative Questions ProjectEach week we'll be posting several questions from The Official Guide for GMAT® Review, 13th Edition and then after couple of days we'll provide Official Answer (OA) to them along with a slution. We'll be glad if you participate in development of this project: 1. Please provide your solutions to the questions; 2. Please vote for the best solutions by pressing Kudos button; 3. Please vote for the questions themselves by pressing Kudos button; 4. Please share your views on difficulty level of the questions, so that we have most precise evaluation. Thank you! We can rewrite the given equality as \(s = 64t + 0.12t\). The divider is t, the quotient is 64. The remainder is \(0.12t\) (it is less than t) and it is an integer, being equal to \(s64t\). Since \(0.12t=\frac{3}{25} t\), it follows that t should be a multiple of 25, so \(t=25n\), for some positive integer n. Therefore, the remainder is \(3n\), or a multiple of 3. The only answer that is a multiple of 3 is 45. Answer: E
_________________
PhD in Applied Mathematics Love GMAT Quant questions and running.



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 9218
Location: Pune, India

If s and t are positive integers such that s/t = 64.12 which
[#permalink]
Show Tags
02 Jul 2012, 02:55
If s and t are positive integers such that s/t = 64.12, which of the following could be the remainder when s is divided by t ?(A) 2 (B) 4 (C) 8 (D) 20 (E) 45 When we say \(\frac{s}{t} = 64.12 = 64 \frac{12}{100} = 64 \frac{3}{25}\) We get \(\frac{s}{t} = 64 \frac{3}{25}\) What does the mixed fraction of the right hand side signify? It signifies that s > t and when s is divided by t, we get 64 as quotient and 3 as remainder if t is 25. e.g. \(\frac{13}{5} = 2 \frac{3}{5}\). Here, remainder is 3 \(\frac{130}{50} = 2 \frac{30}{50}\). Here remainder is 30. \(\frac{26}{10} = 2 \frac{6}{10}\). Here remainder is 6. So in our question, the remainder will be 3 or any multiple of 3. 45 is the only multiple of 3.
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >



Current Student
Joined: 29 Mar 2012
Posts: 302
Location: India
GMAT 1: 640 Q50 V26 GMAT 2: 660 Q50 V28 GMAT 3: 730 Q50 V38

Re: If s and t are positive integers such that s/t = 64.12 which
[#permalink]
Show Tags
02 Jul 2012, 03:11
Hi,
Difficulty level: 600
s/t = 64.12 or s/t = 64 + 0.12 = 64 + 12/100 = 64 + 3/25; 3/25 will give the remainder. Thus, the reminder should be multiple of 3.
Answer (E)
Regards,



Math Expert
Joined: 02 Sep 2009
Posts: 55150

If s and t are positive integers such that s/t = 64.12 which
[#permalink]
Show Tags
06 Jul 2012, 02:57
SOLUTIONIf s and t are positive integers such that s/t = 64.12, which of the following could be the remainder when s is divided by t ?(A) 2 (B) 4 (C) 8 (D) 20 (E) 45 Note: Positive integer \(a\) divided by positive integer \(d\) yields a reminder of \(r\) can always be expressed as \(a=qd+r\), where \(q\) is called a quotient and \(r\) is called a remainder, note here that \(0\leq{r}<d\) (remainder is nonnegative integer and always less than divisor).So, "s divided by t gives remainder r" can be expressed by the following formula: \(s=qt+r\), in or case as \(\frac{s}{t}=64.12\) then \(q=64\), > \(s=64t+r\), divide both parts by \(t\) > \(\frac{s}{t}=64+\frac{r}{t}\) > \(64.12=64+\frac{r}{t}\) > \(0.12=\frac{r}{t}\)> \(\frac{3}{25}=\frac{r}{t}\) so \(r\) must be the multiple of 3. Only answer multiple of 3 is 45. Or: \(\frac{s}{t}=64\frac{12}{100}=64\frac{3}{25}\), so if the divisor=t=25 then the remainder=r=3. Basically we get that divisor is a multiple of 25 and the remainder is a multiple of 3. Only answer multiple of 3 is 45. Answer: E.
_________________



GMAT Tutor
Status: Tutor  BrushMyQuant
Joined: 05 Apr 2011
Posts: 620
Location: India
Concentration: Finance, Marketing
GPA: 3
WE: Information Technology (Computer Software)

Re: Divisibility / Remainder problem
[#permalink]
Show Tags
28 Aug 2012, 02:32
If s and t are positive integers such that s/t = 64.12, which of the following could be the remainder when s is divided by t? (A) 2 (B) 4 (C) 8 (D) 20 (E) 45 s/t = 64.12, => s = t*64.12 => s = 64t + t*.12 So, when s is divided by t then we will get t*.12 as reminder (as t*.12 will be less than t) Now t is an integer and .12 is 12*.01 which means it is 3*something So, only answer choices which are multiple of 3 are contenders. Only possbility is E! Hope it helps!
_________________



Intern
Joined: 28 Aug 2012
Posts: 4

Re: Divisibility / Remainder problem
[#permalink]
Show Tags
28 Aug 2012, 02:57
Answer is E
S/T = 64.12 or you can write it as 6412/100 or 1603/25
So, If we divide 1603 by 25 we will get remainder of 3.
From the five options, only 45 is divisible by 3 So, The answer should be 45.



Senior Manager
Joined: 13 Aug 2012
Posts: 418
Concentration: Marketing, Finance
GPA: 3.23

If s and t are positive integers such that s/t = 64.12, which of
[#permalink]
Show Tags
26 Dec 2012, 23:15
\(\frac{S}{t} = 64 + .12\) \(S = 64t + .12t\) The remainder is equal to .12t. R = .12t R/.12 = t We have to look for R where R/.12 is an integer. A)2/.12 = 200/12 is not an integer B)4/.12 = 400/12 = 100/3 is not an integer C) 8/.12 = 800/12 = 400/6 = 200/3 is not an integer D) also not E) 45/12 = 4500/12 = 1500/4 = 15*25 is an integer Answer: E C)
_________________
Impossible is nothing to God.



Manager
Joined: 15 Apr 2013
Posts: 68
Location: India
Concentration: Finance, General Management
WE: Account Management (Other)

Re: If s and t are positive integers such that s/t = 64.12 which
[#permalink]
Show Tags
27 Jun 2013, 10:18
Bunuel wrote: which means that \(r\) must be a multiple of 3. Only option E offers answer which is a multiple of 3
Answer. E. out of the answer explanation, but can we also say that t must be a multiple of 25 using the same fraction?



Math Expert
Joined: 02 Sep 2009
Posts: 55150

Re: If s and t are positive integers such that s/t = 64.12 which
[#permalink]
Show Tags
27 Jun 2013, 10:48
pavan2185 wrote: Bunuel wrote: which means that \(r\) must be a multiple of 3. Only option E offers answer which is a multiple of 3
Answer. E. out of the answer explanation, but can we also say that t must be a multiple of 25 using the same fraction? Yes, t must be a multiple of 25: s/t = 1603/25 = 3206/50 = 6412/100 = ... = 64.12 > the remainders 3, 6, 12, ..., respectively.
_________________



Intern
Joined: 24 Sep 2012
Posts: 8

If s and t are positive integers such that s/t = 64.12 which
[#permalink]
Show Tags
23 Jun 2014, 03:25
Bunuel wrote: SOLUTION
If s and t are positive integers such that s/t = 64.12, which of the following could be the remainder when s is divided by t ?
(A) 2 (B) 4 (C) 8 (D) 20 (E) 45
\(s\) divided by \(t\) yields the remainder of \(r\) can always be expressed as: \(\frac{s}{t}=q+\frac{r}{t}\) (which is the same as \(s=qt+r\)), where \(q\) is the quotient and \(r\) is the remainder.
Given that \(\frac{s}{t}=64.12=64\frac{12}{100}=64\frac{3}{25}=64+\frac{3}{25}\), so according to the above \(\frac{r}{t}=\frac{3}{25}\), which means that \(r\) must be a multiple of 3. Only option E offers answer which is a multiple of 3
Answer. E. I did not understand why r must be a multiple of 3? From answer choice E 45 is 15 times 3 (a multiple of 3) does that mean t will be 15 times 25?



SVP
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1812
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)

If s and t are positive integers such that s/t = 64.12 which
[#permalink]
Show Tags
23 Jun 2014, 03:41
nehamodak wrote: Bunuel wrote: SOLUTION
If s and t are positive integers such that s/t = 64.12, which of the following could be the remainder when s is divided by t ?
(A) 2 (B) 4 (C) 8 (D) 20 (E) 45
\(s\) divided by \(t\) yields the remainder of \(r\) can always be expressed as: \(\frac{s}{t}=q+\frac{r}{t}\) (which is the same as \(s=qt+r\)), where \(q\) is the quotient and \(r\) is the remainder.
Given that \(\frac{s}{t}=64.12=64\frac{12}{100}=64\frac{3}{25}=64+\frac{3}{25}\), so according to the above \(\frac{r}{t}=\frac{3}{25}\), which means that \(r\) must be a multiple of 3. Only option E offers answer which is a multiple of 3
Answer. E. I did not understand why r must be a multiple of 3? From answer choice E 45 is 15 times 3 (a multiple of 3) does that mean t will be 15 times 25? Because \(\frac{3}{25}\)cannot be simplified further (say factorised further) \(\frac{3}{25}= \frac{3*15}{25*15}= \frac{45}{25*15}\) ... That is possible
_________________
Kindly press "+1 Kudos" to appreciate



MBA Blogger
Joined: 19 Apr 2014
Posts: 82
Location: India
Concentration: Strategy, Technology
WE: Analyst (Computer Software)

Re: If s and t are positive integers such that s/t = 64.12 which
[#permalink]
Show Tags
13 Aug 2014, 22:28
What if we have another option with a multiple of 3. For eg. 6 or 12!!
_________________
KUDOS please!! If it helped. Warm Regards. Visit My Blog



SVP
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1812
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)

If s and t are positive integers such that s/t = 64.12 which
[#permalink]
Show Tags
13 Aug 2014, 23:43
scofield1521 wrote: What if we have another option with a multiple of 3. For eg. 6 or 12!! This is an open ended question. Has multiple probable answers For such questions, the OA is noncontrary
_________________
Kindly press "+1 Kudos" to appreciate



Manager
Joined: 07 Apr 2014
Posts: 105

If s and t are positive integers such that s/t = 64.12 which
[#permalink]
Show Tags
06 Sep 2014, 11:40
Answered this question wrong but when i finished reading karishma's blog http://www.veritasprep.com/blog/2011/05/quarterwitquarterwisdomknockingofftheremainingremainders/ . I am confident about these type of questions. s/t=64.12 when we divide "s" by "t" then 64.12, Here .12 is a Remainder which we are representing in quotient. so to find the possible remainder... 0.1212/100  3/25 , so 25 or multiple of 25 has to be a "t" & 3 or multiple of 3 has to be remainder. Answer E.



Manager
Joined: 21 Jul 2014
Posts: 83
Location: India
Schools: Booth '21 (D), Ross '21 (D), Tuck '21 (D), Johnson '21 (WL), Kelley '21 (D), KenanFlagler '21 (II), LBS '21 (D), Insead Sept19 Intake (D), ISB '20 (A), Goizueta '21 (D), Fisher '21 (I), Mendoza '21 (I), Carlson '21 (I)
GPA: 4
WE: Project Management (Energy and Utilities)

Re: If s and t are positive integers such that s/t = 64.12 which
[#permalink]
Show Tags
01 Mar 2015, 00:31
Bunuel wrote: SOLUTION
If s and t are positive integers such that s/t = 64.12, which of the following could be the remainder when s is divided by t ?
(A) 2 (B) 4 (C) 8 (D) 20 (E) 45
\(s\) divided by \(t\) yields the remainder of \(r\) can always be expressed as: \(\frac{s}{t}=q+\frac{r}{t}\) (which is the same as \(s=qt+r\)), where \(q\) is the quotient and \(r\) is the remainder.
Given that \(\frac{s}{t}=64.12=64\frac{12}{100}=64\frac{3}{25}=64+\frac{3}{25}\), so according to the above \(\frac{r}{t}=\frac{3}{25}\), which means that \(r\) must be a multiple of 3. Only option E offers answer which is a multiple of 3
Answer. E. If the question had been which of the following cannot be the remainder. Then can we use the propertry that Remainder must be divisibe by 25 as well???



eGMAT Representative
Joined: 04 Jan 2015
Posts: 2845

Re: If s and t are positive integers such that s/t = 64.12 which
[#permalink]
Show Tags
04 May 2015, 23:43
nehamodak wrote: I did not understand why r must be a multiple of 3? From answer choice E 45 is 15 times 3 (a multiple of 3) does that mean t will be 15 times 25?
After expressing s/t = 64.12 as: s = 64t + 0.12t In case a student faces doubts about how to draw inferences about remainder r from the above equation, here is an alternate line of thought: It is clear that the remainder r will come from the term 0.12t
So, we can write: r = 0.12t
=> t = \(\frac{r}{0.12}\) = \(\frac{100r}{12}\) = \(\frac{25r}{3}\)
So, t = \(\frac{25r}{3}\)
But, the question statement gives us a constraint on t: that t is a positive integer.
This means, \(\frac{25r}{3}\) is a positive integer.
This is only possible when r is a multiple of 3.
As I said, an alternate route to the same deduction. Hope this was useful for you! Best Regards Japinder
_________________



eGMAT Representative
Joined: 04 Jan 2015
Posts: 2845

Re: If s and t are positive integers such that s/t = 64.12 which
[#permalink]
Show Tags
05 May 2015, 00:47
ankushbagwale wrote: Bunuel wrote: SOLUTION
If s and t are positive integers such that s/t = 64.12, which of the following could be the remainder when s is divided by t ?
(A) 2 (B) 4 (C) 8 (D) 20 (E) 45
\(s\) divided by \(t\) yields the remainder of \(r\) can always be expressed as: \(\frac{s}{t}=q+\frac{r}{t}\) (which is the same as \(s=qt+r\)), where \(q\) is the quotient and \(r\) is the remainder.
Given that \(\frac{s}{t}=64.12=64\frac{12}{100}=64\frac{3}{25}=64+\frac{3}{25}\), so according to the above \(\frac{r}{t}=\frac{3}{25}\), which means that \(r\) must be a multiple of 3. Only option E offers answer which is a multiple of 3
Answer. E. If the question had been which of the following cannot be the remainder. Then can we use the propertry that Remainder must be divisibe by 25 as well??? Dear Ankush Good to see you here on GC! Here's the answer to your question: It is not necessary for the remainder to be divisible by 25. Let's look at this in terms of constraints: Constraint 1: The remainder is always a nonnegative integer.
From the equation
\(\frac{r}{t}=\frac{3}{25}\), we get that
r=\(\frac{3t}{25}\)
From constraint 1, we see that
\(\frac{3t}{25}\) must be a nonnegative integer.
This means either t = 0 or t is a multiple of 25.
But t cannot be equal to 0 because then the expression \(\frac{s}{t}\) becomes undefined
This means, t is a multiple of 25. Constraint 2: The question states that t is a positive integer.
As explained in the post I made just above, this means \(\frac{25r}{3}\) is a positive integer, which leads you to the inference that r is a multiple of 3.So, the bottomline is that the only 2 inferences that we can conclusively draw from the given information is that: i) t is a multiple of 25 and ii) r is a multiple of 3 Hope this helped! Thanks and Best Regards Japinder
_________________




Re: If s and t are positive integers such that s/t = 64.12 which
[#permalink]
05 May 2015, 00:47



Go to page
1 2
Next
[ 31 posts ]



