Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

f an infinite GP is summable (|r|<1) then the sum is \frac{b_1}{1-r}

can someone please explain what these means with numbers?

i guess what i'm asking for here is a question where we would use this concept

The sum of infinite geometric progression with common ratio \(|r|<1\), is \(sum=\frac{b}{1-r}\), where \(b\) is the first term.

For example, the sum of infinite geometric progression 1/2, 1/6, 1/18, 1/54, ... (first term = 1/2, common ratio = 1/3) is \(sum=\frac{b}{1-r}=\frac{\frac{1}{2}}{1-\frac{1}{3}}=\frac{3}{4}\).

"Summation The sum of an infinite GP will be finite if absolute value of r < 1 The general sum of a n term GP with common ratio r is given by \(b_1*\frac{r^n - 1}{r-1}\) If an infinite GP is summable (|r|<1) then the sum is \(\frac{b_1}{1-r}\) "

Awesome post! After 4 years, I still want to read your post. Just need to correct the typo I hightlight than your post is perfect. The correct formula is \(S=b_1\frac{1-r^n}{1-r}\) not

"Summation The sum of an infinite GP will be finite if absolute value of r < 1 The general sum of a n term GP with common ratio r is given by \(b_1*\frac{r^n - 1}{r-1}\) If an infinite GP is summable (|r|<1) then the sum is \(\frac{b_1}{1-r}\) "

Awesome post! After 4 years, I still want to read your post. Just need to correct the typo I hightlight than your post is perfect. The correct formula is \(S=b_1\frac{1-r^n}{1-r}\) not

\(b_1*\frac{r^n - 1}{r-1}\)

There is no typo there. Those two are the same: factor -1 from denominator and numerator and reduce.
_________________

One small correction as highlighted in bold: In a finite AP, the mean of all the terms is equal to the mean of the middle two terms if n is even and the middle term if n is ODD. In either case this is also equal to the mean of the first and last terms first and last terms

In "summation" for the arithmetic progression, where you give the general sum of a n term AP with common difference d, you have "a" instead of "a1", right?

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

..."n a finite AP, the mean of all the terms is equal to the mean of the middle two terms if n is even and the middle term if n is odd. In either case this is also equal to the mean of the first and last terms"

Misc Notes A subsequence (any set of consequutive terms) of an AP is an AP

A subsequence (any set of consequutive terms) of a GP is a GP

A subsequence (any set of consequutive terms) of a HP is a HP

If given an AP, and I pick out a subsequence from that AP, consisting of the terms \(a_{i1},a_{i2},a_{i3},...\) such that \(i1,i2,i3\) are in AP then the new subsequence will also be an AP

For Example : Consider the AP with \(a_1=1, d=2\) {1,3,5,7,9,11,...}, so a_n=1+2*(n-1)=2n-1 Pick out the subsequence of terms \(a_5,a_{10},a_{15},...\) New sequence is {9,19,29,...} which is an AP with \(a_1=9\) and \(d=10\) If given a GP, and I pick out a subsequence from that GP, consisting of the terms \(b_{i1},b_{i2},b_{i3},...\) such that \(i1,i2,i3\) are in AP then the new subsequence will also be a GP

For Example : Consider the GP with \(b_1=1, r=2\) {1,2,4,8,16,32,...}, so b_n=2^(n-1) Pick out the subsequence of terms \(b_2,b_4,b_6,...\) New sequence is {4,16,64,...} which is a GP with \(b_1=4\) and \(r=4\)

The special sequence in which each term is the sum of previous two terms is known as the fibonacci sequence. It is neither an AP nor a GP. The first two terms are 1. {1,1,2,3,5,8,13,...}

In a finite AP, the mean of all the terms is equal to the mean of the middle two terms if n is even and the middle term if n is even. In either case this is also equal to the mean of the first and last terms

I am sure you mean that " In a finite AP, the mean of all the terms is equal to the mean of the middle two terms if n is even and the middle term if n is ODD. In either case this is also equal to the mean of the first and last terms "

Thank you so much for the post though, is very valuable

Version 8.1 of the WordPress for Android app is now available, with some great enhancements to publishing: background media uploading. Adding images to a post or page? Now...

“Keep your head down, and work hard. Don’t attract any attention. You should be grateful to be here.” Why do we keep quiet? Being an immigrant is a constant...

“Keep your head down, and work hard. Don’t attract any attention. You should be grateful to be here.” Why do we keep quiet? Being an immigrant is a constant...