hrish88 wrote:
Right triangle ABC is to be drawn in the xy-plane so that the right angle is at A and AB is parallel to the y-axis. If the x- and y-coordinates of A, B, and C are to be integers that are consistent with the inequalities -6 ≤ x ≤ 2 and 4 ≤ y ≤ 9 , then how many different triangles can be drawn that will meet these conditions?
A. 54
B. 432
C. 2,160
D. 2,916
E. 148,824
First, get the integer points available for x-axis: 2 - (-6) + 1 = 9
Second, get the interger points available for y-axis: 9-4+1 = 6
How many ways to select the location of line AB in the x-axis? 9
How many ways to select the location of point C in the x-axis? 8 (Note: we cannot select the location of line AB)
How many ways to select the location of the base? 2 (Is it BC or AB?)
How many ways to position line AB parallel to y axis? 6!/2!4! = 15
Multiple all that:\(9*8*2*15 = 2,160\)
Answer: C